
Isomorphism Checking for Symmetry Reduction

Arend Rensink
Department of Computer Science, University of Twente

P.O.Box 217, 7500 AE Enschede, The Netherlands

April 12, 2010

Abstract

In this paper, we show how isomorphism checking can be used as an
effective technique for symmetry reduction. Reduced state spaces are
equivalent to the original ones under a strong notion of bisimilarity which
preserves the multiplicity of outgoing transitions, and therefore also pre-
serves stochastic temporal logics. We have implemented this in a setting
where states are arbitrary graphs. Since no efficiently computable canoni-
cal representation is known for arbitrary graphs modulo isomorphism, we
define an isomorphism-predicting hash function on the basis of an existing
partition refinement algorithm. As an example, we report a factorial state
space reduction on a model of an ad-hoc network connectivity protocol.

1 Introduction

The core activity of any model checker is state space exploration; the most im-
portant problem encountered is the combinatorial state space explosion, due to
which explicit-state model checking can become intractable even for small prob-
lem instances. One of the main methods to counter this is symmetry reduction,
which is the principle of collapsing all states that are sufficiently similar to one
single state. Under a well-chosen notion of “sufficiently similar”, the reduced
(quotient) state space is as good as the original one for checking the properties
one is interested in.

In the original conception of, e.g., [5, 12], the notion of “sufficiently similar”
is captured by symmetries computed on the level of the state space. That is,
states are collapsed only if there are automorphisms of the overall transition
system that map them onto one another — or in other words, if they are in
the same orbit of the automorphism group. Let us call this relation global
symmetry. However, the core property that causes the reduced state space to
be as good as the original one is that it is bisimilar to that original, and for this
purpose it is not necessary that collapsed states are globally symmetric: in fact,
any congruence (or auto-bisimulation) will do. This was in fact clear from the
beginning of the research in this area; some proposals to use a weaker congruence
than global symmetry can be found in [9, 10]. Here, the authors propose to use
virtual, respectively local symmetry, which is based on the structure of the states.
This is the approach we follow as well.

We are interested in model checking software systems, both at design time
(where the models are typically given in some visual language) and at implemen-

1



tation time (where the models are derived from code). To capture this domain
in sufficient generality, for the purpose of this paper we assume system states
to be arbitrary graphs; and we call states (locally) symmetric if the graphs are
isomorphic. This raises an immediate complexity concern: to quote from [10],
“the general problem of computing symmetry equivalence classes [. . . ] has no
polynomial-time solution. In general this makes it too costly to perform during
model checking.” Though we do not wish to dispute this per se (the phrase
“in general” makes the statement almost irrefutable in any case), we do want
to show that there are cases where the reduction due to isomorphism outweighs
the cost.

An important element in the feasibility of our approach is the fact that one
of the existing (very successful) isomorphism checking algorithms, developed by
McKay [15], can be used not only to answer the standard question: “Given two
graphs G and H, is H isomorphic to G?” but also, equally efficiently, the more
general question: “Given a graph G and a set of pairwise non-isomorphic graphs
S, does S contain a graph H isomorphic to G?” Namely, this algorithm works
on the basis of invariants computed for the individual graphs at hand, and
these invariants can be used as hash keys in storing the graphs of S. Although
it follows from the complexity of isomorphism checking that no known algorithm
computes canonical invariants (i.e., which never give rise to hash collisions for
non-isomorphic graphs) in polynomial time, we report a variant of McKay’s
algorithm that is almost collision-free in our experiments, and has a worst-time
complexity of O(mn log n) (where m is the number of edges and n the number
of nodes in the graph). The experiments have been carried out in Groove [18],
which is a tool for graph transformation-based model checking.

Note that the concept of an invariant is crucially different from that of a
canonical representative, as used in the existing symmetry reduction methods, in
that graphs cannot be reconstructed from their invariants. Indeed, the ability to
do so would imply injectivity (and hence collision freedom) of the hash function.

Another contribution is that we show our reduction to be correct with respect
to a stronger version of bisimilarity, which also preserves the number of outgoing
transitions, à la resource bisimulation (see [6]). This is useful because, given a
suitable notion of transition rates, resource bisimilarity also preserves stochastic
logics such as CS(R)L (see [1, 2]).

To show the feasibility of our approach, we show results on modelling an
ad-hoc network connectivity protocol, based on peer sampling. We show that
the symmetry reduction achieved is very close to the theoretical maximum.

The remainder of the paper is structured as follows. In Section 2 we recall
the notions of symmetry reduction and isomorphism. In Section 3 we discuss
the algorithm used for computing the invariants. In Section 4 we present our
experimental results, and in Section 5 we wrap up.

2 Definitions

As usual, we use state-transition systems as behavioural models. In the following
we assume a universe Lab of labels. For the sake of generality we allow labelled
transitions as well as (set-)labelled states.

2



Definition 1 (transition systems) A transition system is a tuple 〈Q,T, L, ι〉,
where Q is a set of states, T a set of transitions with implicit source and target
functions src, tgt :T →Q and labelling function lab:T →Lab, L:Q→2Lab a state
labelling function, and ι ∈ Q the initial state.

Note that, in contrast to what is usual, T is not an (indexed) binary relation over
states: though every transition t ∈ T defines a triple (src(t), lab(t), tgt(t)), in
our models there may be more than one identically labelled transition between
the same states. The rationale behind this is that we also intend to use our
framework for models where the number of outgoing transitions is relevant, for
instance because they have an associated rate, as in certain types of stochastic
models; see, e.g., [1].

In fact, without giving detailed definitions we observe that temporal logics
such as CTL∗ [8], modal logics such as the modal µ-calculus [14], and stochastic
logics such as CSL1 [1] and CSRL2 [2] all have a natural semantics over transition
systems. As usual, we express the semantics by writing K |= φ, for φ some
formula in one of these logics, if K satisfies the property φ.

We will now recall a variation on bisimulation introduced by [6].

Definition 2 (resource bisimilarity) Given a transition system K, resource
bisimilarity is the largest equivalence ∼ ⊆ Q × Q such that for all s1 ∼ s2, all
a ∈ Lab and all X ∈ Q/∼: (i) L(s1) = L(s2) and (ii)

|src−1(s1) ∩ lab−1(a) ∩ tgt−1(X)| = |src−1(s2) ∩ lab−1(a) ∩ tgt−1(X)| .

We also say that two transition systems K1,K2 are bisimilar (denoted K1 ∼ K2)
if ι1 ∼ ι2 in the disjoint union K1 ]K2.

The first condition states that for every state s, every label a and every maximal
set of bisimilar states X, the number of outgoing a-labelled transitions from s
to some state in X is well-defined modulo resource bisimilarity of s. It is clear
that this gives rise to a more discriminating relation than the standard notion
of strong bisimilarity (which does not compare numbers of transitions but just
the existence of transitions). The following is known (see, e.g., [20, 1, 3]):

Proposition 3 For two transition systems K1,K2, K1 ∼ K2 implies that K1 |=
φ iff K2 |= φ for arbitrary properties φ in CTL∗, µ-calculus and CS(R)L.

Graphs and isomorphism. We now recall the standard concepts of graphs
and graph isomorphism. We use the same universe of labels as for transition
systems; the context will ensure that no confusion arises.

Definition 4 (graphs)

1. A graph is a tuple 〈V,E〉 with V a set of nodes and E a set of edges
with associated source and target functions src, tgt :E → V and labelling
function lab:E → Lab.

1Continuous Stochastic Logic; this can be interpreted by associating a rate λt ∈ Real with
every transition t as a function of its label lab(t), and setting the rate between two states to
the sum of all individual transition rates.

2Continuous Stochastic Reward Logic, an extension to CSL which can be interpreted by
associating a reward ρq with every state q as a function of its properties L(q).

3



2. Given two graphs G, H, a morphism f :G → H is a pair of functions
fV :VG→VH and fE :EG→EH such that srcH ◦fE = fV ◦srcG, tgtH ◦fE =
fV ◦ tgtG and labH ◦ fE = labG. f is an isomorphism if fV and fE are
bijective; we sometimes write f : G ∼= H to denote this. G and H are then
called isomorphic, denoted G ∼= H.

3. Given a graph G and a set of colours Y , a G-colouring is a pair of func-
tions (cV :VG → Y, cE :EG → Y ).

We will silently extend functions such as fV and c pointwise to sets, and also use
their inverse as functions from sets to sets. Moreover, we will manipulate pairs
of functions as one, as in c ◦ f or c−1 where f is a morphism and c a colouring.

Clearly, transition systems are graphs with extra structure, but we will not
use this analogy here. Let Graph denote the universe of graphs. We recall the
following (see, e.g., [22]):

Observation 5 (complexity of isomorphism) Given two graphs G, H, de-
ciding G ∼= H is in NP with respect to |VG|, but not known either to be in P or
to be NP-complete; it is thought to be neither.

In this paper, we study transition systems in which every state is essentially
characterised by an associated graph.

Definition 6 (graph-based transition systems) A transition system K is
called graph-based if it is equipped with an injective function g:Q→ Graph as-
sociating a graph with every state, such that g(q) ∼= g(q′) implies q ∼ q′ for all
q, q′ ∈ Q.

The underlying idea of graph-based transition systems is that all essential char-
acteristics of a state are encoded in its associated graph, but the chosen node
and edge identities of the graph (i.e., the sets Vg(q) and Eg(q)) are irrelevant. We
claim that any existing specification language with semantics defined in terms
of transition systems is or can be formulated so as to give rise to graph-based
transition systems. In this paper, we report an experiment using graph transfor-
mation, where transitions are essentially transformation rule derivations, which
are always well-defined modulo graph isomorphism. In the remainder of this
paper, we work only with graph-based transition systems.

Definition 7 (transition system quotient) Given a transition system K, a
state representation is a function α:Q → Q such that g(α(q)) ∼= g(q) for all
q ∈ Q. α is called canonical if g(q) ∼= g(q′) implies α(q) = α(q′).

For all q ∈ Q let fq: g(q) → g(α(q)) be the isomorphism from q’s graph to
that of its representative. The quotient of K with respect to α is then defined by

K/α = 〈α(Q), {(t, ftgt(t)) | src(t) = α(Q)}, L � α(Q), α(ι), g � α(Q)〉

with src((t, f)) = α(src(t)), tgt((t, f)) = α(tgt(t)), and lab((t, f)) = lab(t).
(f � X denotes the restriction of f to the domain X.)

Hence, a state representation selects states with isomorphic graphs. For any
non-injective α and finite K, the quotient K/α is clearly smaller than K; this
is in fact our notion of symmetry reduction. The best reduction is achieved
by using a canonical α. The following is the core insight for the usefulness of
symmetry reduction.

4



Proposition 8 (correctness of symmetry reduction) If K is a transition
system and α a state representation, then K/α ∼ K.

Of course, what we want in practice is not to first construct a transition system
and then reduce it to its quotient, but rather to generate the quotient straight
away. This on-the-fly symmetry reduction relies on the following core steps to
add to an existing transition system K a single transition t with src(t) ∈ Q:

1 if ∃q ∈ Q : ∃f : g(tgt(t)) ∼= g(q) (i.e., f → g(tgt(t))g(q) is an isomor-
phism)

2 then let T := T ∪ {(t, f)}
3 else let Q := Q ∪ tgt(t);
4 let T := T ∪ {(t, id)};
5 endif

In terms of Definition 7, the then branch corresponds to setting α(tgt(t)) = q,
whereas α is the identity on tgt(t) in the else branch. (In the latter case, the
L-function should be extended as well, but we ignore this here.)

Complexity-wise, clearly the interesting step is Line 1, which searches for a
state (in the set of previously detected states Q) with a graph isomorphic to
that of the target of t.

3 Membership Checking Modulo Isomorphism

From the discussion above, we know that the core problem is the following:

Given a set of graphs S and a graph G, return an isomorphism
f :G→H for some H ∈ S, or report failure and return S ∪ {G}.

On the face of it, this would seem to be even harder than deciding isomorphism
for two given graphs, but as we will see, this is not really the case. If an algorithm
reports failure though there exists an isomorphism of the right kind, we call this
a false negative. If (and only if) the algorithm never yields false negatives,
the derived function α is canonical. Note that even for a non-canonical α the
reduction is correct, though the size of the reduced state space will depend on
the “quality” of the algorithm, in terms of its number of false negatives (the
fewer false negatives, the smaller the reduced state space).

Our solution is based on the concept of an isomorphism invariant :

Definition 9 (invariants)
1. Given a set of hash values X, an invariant hash function H is a function

fH:Graph → X such that G ∼= H implies H(G) = H(H). Again, H is
called canonical if the inverse is also true, i.e., H(G) = H(H) implies
G ∼= H.

2. An invariant colouring function C maps every graph G to a G-colouring
C(G) (for the same sets of colours Y ), such that f : G ∼= H implies
C(G) = C(H) ◦ f . C is called canonical if the inverse is also true.

For a function k:A→ B, let us denote by im(k) the multiset of values used as
k-images: formally, im(k):B → Nat is defined by y 7→ |k−1(y)| for all y ∈ B.
The following states that every invariant colouring C gives rise to an invariant
hash function C̄ : G 7→ (im(C(G)V ), im(C(G)E)).

5



Proposition 10 For an invariant colouring C, if G ∼= H then C̄(G) = C̄(H).
If C is canonical, then the inverse also holds.

In the remainder of this paper we use integer values as hash values and colours,
i.e., we assume X = Y = Int, and we assume the existence of a label hash
function hash: Lab→ Nat. Easy examples are:

• H : G 7→ |EG|, yielding the number of edges in a graph;
• C : G 7→ (cV , cE) where cV : v 7→ |tgt−1

G (v)| and cE : e 7→ hash(labG(e)).

From an invariant colouring function C we can easily derive an invariant hash
function HC , as follows:

HC :G 7→
∑

v∈VG
C(G)V (v) +

∑
e∈EG

C(G)E(e) . (1)

Our solution to the problem stated above is based on an invariant colouring C.
The set S is stored as a hash map Int → 2Graph such that HC(G) = n for all
G ∈ S(n). The algorithm then consists of the following steps:

1 let B = S(HC(G));
2 for all H ∈ B such that C̄(H) = C̄(G) do
3 if ∃f : G ∼= H.f ⊆ C(H)−1 ◦ C(G)
4 then return f
5 endif
6 endfor
7 let S := S[n 7→ (B ∪ {G})];
8 report failure

Line 3 specifies a search for isomorphisms within the relational space C(H)−1 ◦
C(G) (to be interpreted pairwise). At first sight, it would seem that this is
no improvement over the original problem. Note, however, that if B = ∅, or
if C̄(G) 6= C̄(H) for some candidate H ∈ B, then this search will cheaply fail
(due to Proposition 10). Furthermore, if C(G) is injective (which implies that
G has no automorphisms) then C(H)−1

V ◦ C(G)V and C(H)−1
E ◦ C(G)E are one-

to-one, meaning that there is at most one candidate f . Also, if C is canonical
then any morphism f with fV ⊆ C(H)−1 ◦ C(G) is an isomorphism, making
the search linear in |VG| + |EG|; and even for non-canonical C, the number of
“non-iso-morphisms” may be small. Finally, recall that false negatives do not
destroy the correctness (though they harm the effectiveness) of the algorithm:
therefore, one may weaken the test in Line 3 by not exhaustively searching for
an isomorphism but “giving up” after trying out a certain number of candidates.

We will call a false hash positive any graph H ∈ B for which no isomorphism
is found, and a false colouring positive any H ∈ B for which C̄(G) = C̄(H) but
no isomorphism is found. A false positive can be due to a non-canonical C, or
due to collisions in the computation of HC . Obviously, the fewer false positives,
the less time is wasted in the search of Line 3; hence the fraction of false positives
is a measure of the quality of the invariant colouring C.

Stable partitions We have now reduced the symmetry reduction problem
to the problem of finding a good invariant colouring C, which gives rise to few
false positives and is efficiently computable. Preferably C should be canonical,

6



b

Πaut

Πcsr(unit(G))

b
a

a

a

a

bb

Figure 1: Graph with two partitions: The dashed lines connect the
cells of Πcsr({V }), the dotted lines do the same for Πaut

but Observation 5 implies that there is little hope for any canonical C with
polynomial worst time complexity.

We define our candidate colouring function by starting with the unit colour-
ing unit , which assigns a single colour to all vertices and hash(lab(e)) to all
edges e, and manipulating and refining this until it is close enough to canoni-
cal. In this process it is of supreme importance that all constructions F on the
colourings preserve invariance, in the sense that if cG = cH ◦ f for colourings
cG and cH and isomorphism f :G ∼= H, then F(cG) = F(cH) ◦ f . Since the unit
colouring is clearly invariant, this ensures that the resulting colouring is, too.

Our construction is a combination of ideas from Paige and Tarjan [17] and
McKay [15]. To explain this, first we have to recall some more concepts.

Given a graph G, a partition of G is a set of pairwise disjoint, non-empty
sets Π = {V1, . . . , Vn} such that VG =

⋃
Π. For instance, any G-colouring c

(using colours Y ) gives rise to a partition Πc = {C(G)−1
V (y) | y ∈ Y }. The unit

partition is Πunit = {{V }}. Partition Π1 is finer than Π2 (and Π2 coarser than
Π1), denoted Π1 ≤ Π2, if for all V ∈ Π1 there is a W ∈ Π2 such that V ⊆ W .
Π is stable with respect to G (equitable in terms of [15]) if for all V,W ∈ Π, all
v1, v2 ∈ V and all a ∈ Lab, the following conditions hold:3

|src−1(v1) ∩ lab−1(a) ∩ tgt−1(W )| = |src−1(v2) ∩ lab−1(a) ∩ tgt−1(W )|
|tgt−1(v1) ∩ lab−1(a) ∩ src−1(W )| = |tgt−1(v2) ∩ lab−1(a) ∩ src−1(W )| .

We call a G-colouring c stable if Πc is stable. For every partition Π of G,
there is a unique coarsest stable refinement of Π, which we denote csr(Π). One
of the algorithms in [17] computes csr(Π) from Π in time O(m log n), where
m = |EG| and n = |VG|. There is also a unique finest stable partition of every
graph, induced by its automorphism group, defined by Πaut = [v]autv ∈ VG where
[v]aut = {f(v) ∈ VG | f : G ∼= G}. It follows that Πaut ≤ ΠC(G) for any invariant
colouring C, and Πaut = ΠC(G) if C is canonical. For instance, Figure 1 shows the
coarsest stable refinement of the unit partition {V } as well as the finest stable
partition Πaut.

Phase 1: Refining the unit partition. The concepts of refinement and
stability lift from partitions to colourings in the obvious way. From an arbitrary
G-colouring c, we will attempt to construct a stable G-colouring csr(c) such that
Πcsr(c) = csr(Πc). (Note that this is not uniquely defined, since the colours are

3Note the analogy to resource bisimilarity (Definition 2): if we regard a transition system as
a graph, then ∼ induces a “forward stable” partition, in which just the first of these conditions
holds.

7



not fixed.) As discussed above, the construction should be invariant preserving.
The following straightforward algorithm is our first candidate. It makes use of
auxiliary hashing functions hE :Nat3 → Nat and hsrc , htgt :Nat→ Nat

1 function rfn(c):
2 do
3 let c′ := c;
4 let c := (cV , cE) with
5 cE : e 7→ hE(c′(src(e)), c′(tgt(e)), hash(lab(e)))
6 cV : v 7→

P
{hsrc(cE(e)) | v = src(e)}+

P
{htgt(cE(e)) | v = tgt(e)}

7 until |c′V (VG)| ≤ |cV (VG)|
8 return c′;

Clearly, rfn is invariance preserving. The worst-time complexity is O(md)
where m = |EG| and d is the diameter of the graph (the maximum length of the
shortest paths between connected nodes), which in the worst case equals |VG|.
Furthermore, if hE , hsrc and htgt are injective in all parameters, and hsrc and
htgt are such that the summation in the definition of cV also never collides, then
the colouring returned by the algorithm is a coarsest stable refinement of the
input value. In practice we cannot make these guarantees, as we are working
in a finite domain of numbers; in fact, it may happen that the output colouring
does not even refine the input. Even in the case of collisions, though, the result
is not worse, and very likely better, than the input, as it distinguishes at least
as many elements. Our first candidate invariant colouring function is therefore
G 7→ rfn(unit(G)); below, we call this the “naive refinement”.

A variation on Paige and Tarjan’s partition refinement algorithm from [17]
gives rise to another candidate colouring refinement function; for lack of space
we cannot present it here, but let us call this function pt . Some care has to
be taken that also this is invariance preserving; however, the advantage of this
algorithm is that it has worst-case complexity O(m log n), where n = |VG|, and
is guaranteed to yield the coarsest stable refinement. Our second candidate
invariant colouring is G 7→ pt(unit(G)).

Phase 2: Breaking symmetries and summing up. As Figure 1 shows,
not surprisingly the coarsest stable partition refining the unit partition is in
general coarser than Πaut. Inspired by McKay [15], we have implemented a
further refinement based on the idea of symmetry breaking. Here, we successively
change the colour of each of the vertices in every non-trivial cell of the input
colouring’s partition, and sum all the resulting colourings, according to the
following algorithm (which uses an auxiliary hash function hbrk ).

1 function breakSymF (c):
2 let c := F(c);
3 for all v ∈ VG with ∃v′ 6= v : cV (v) = cV (v′) do
4 let c := c + F(c[v 7→ hbrk (c(v))])
5 endfor
6 return c

The parameter F is a transformation from G-colourings to G-colourings.
For an arbitrary invariance-preserving transformation F , breakSymF is also

8



invariance-preserving. In particular, this is the case if we take F to be rfn
defined above, or the Paige-Tarjan alternative. breakSymF potentially refines
its input further, because breaking the symmetry at elements of distinct cells
of Πaut will in general affect its rest of the graph differently. This gives rise
to two improved invariant colouring functions, G 7→ breakSymrfn(unit(G)) and
G 7→ breakSympt(unit(G)).

4 Example: Ad-Hoc Network Connectivity

We illustrate the effectiveness of our method on the basis of an experiment
previously reported in [7], where we modelled several versions of an ad-hoc
network connectivity protocol originally proposed in [13]. This is an interesting
case in that it concerns a realistic system in a very active application area,
which, moreover, has a very high degree of non-trivial symmetry: all network
nodes can be automorphic. It is therefore to be expected that isomorphism-
based symmetry reduction can be large, whereas traditional symmetry reduction
methods do not apply. Moreover, the properties checked on the model are
formulated in CSRL, hence it is important that our reduction respects resource
bisimilarity rather than standard bisimilarity (see Proposition 3).

The protocol. The system being modelled is an ad-hoc network, which con-
sists of a set of linked network nodes but lacks a central server. Instead, the
network nodes must themselves acquire and maintain knowledge of the structure
of the network. This is done by so-called peer sampling, in which the nodes con-
tinuously exchange information about their “neighbours” or “peers” (the nodes
they know about). The goal of this behaviour is to maintain a well-balanced
network. In [13] it is assumed that each node knows only a small number of its
peers; the set of peers known to a node is called its view, and has a maximum
size. The behaviour of every node is to repeatedly execute the following steps:

1. The node becomes active and starts its peer sampling;
2. The node randomly selects a peer from its view;
3. The node and its peer send their view and/or receive a view in return;
4. The node and/or its peer merge the received view with their own view;
5. The node and/or its peer prune excess peers from their merged view;
6. The node is deactivated.

This sequence is taken to be atomic for each node, meaning that at most one
node is active at any given time. We call the network stable if no node is active.

One of the parameters of the protocol is the communication policy in (step 3),
which can be push (in which the node sends to its selected peer), pull (in which
the peer sends to the original node) or both (push-pull). Other parameters are
the view size and the network size. In the original presentation of [13] there are
further parameters, but we can ignore them for the purpose of this paper.

A typical question that one can ask about this system is how well the network
keeps up over time: for instance, can it fragment into disconnected parts, and if
so, what is the probability of this happening, as a function of time? To be able
to answer such questions, we have modelled the protocol in Groove (see [18]).
The model consists of an initial state, shown in Figure 2, and a set of graph

9



choose−node

Figure 2: Initial network, node selection, and a stable next state.

transformation rules capturing the steps described above. This automatically
results in a graph-based transition system in the sense of Definition 6.

Reduction. First we analyse the maximal achievable symmetry reduction,
without taking the actual protocol into account. For a given network of size N

and view size C, the number of possible configurations is
(

(N−1)
C

)N : each node
has C distinct neighbours in its view, out of a possible N − 1, and there are
N nodes. This function clearly grows quite fast. It is less straightforward to
compute the number of configurations modulo isomorphism, but a lower bound
for that number can be established as follows. For every configuration graph,
there are N !/P distinct isomorphic graphs over the same set of nodes, where P
is the size of the automorphism group of the graph. Namely, every permutation
of the set of nodes gives rise to an isomorphic graph, but not all of those will
be distinct; instead, each distinct isomorphic graph is obtained in this way
through P different permutations. The size of the automorphism group is not
easily predicted, but for larger random graphs its average is known to approach
1. Thus, we can expect a theoretical maximal reduction factor of at most N !,
and for larger N the actual maximal reduction will probably be close to this.

To confirm this hypothesis, we have created another model in Groove to
generate all the possible network configurations modulo isomorphism, for various
network and view sizes. The results, as far as we have been able to compute
them, are given in Table 3. It can be seen that, as expected, for larger networks
the actual maximal reduction approaches the theoretical maximum quite closely.

Note that the numbers for given N and C are always equal to that for N
and N −C − 1. This is to be expected, since every configuration of view size C
can be turned into its dual one of view size N −C−1 by defining links precisely
where there are none in the original.

The real reduction depends in addition on the set of configurations that are
reachable in the model. If the reachable configurations (without reduction) in-
clude few of the possible isomorphic representatives, the actual reduction factor
may be much smaller than the theoretical maximum. However, this turns out
not to be the case: the reachable configurations include almost all of the possi-
ble ones. Table 4 shows the size of the total state space (obtained from another
model, specified in µCRL; see [7]) and the reduced state space, as well as the
number of (reduced) reachable stable configurations. The reduction factors of
the state space are of the same order of magnitude as in Table 3.

For the entries marked “–” in this table, we have been unable to fully explore
the state space. The largest sizes we have been able to cope with are N = 7, C =
2 and N = 7, C = 4. Note that in all explored cases, the total state space size
is in the order of 50 times as large as the number of reachable configurations.

10



N 4 5 6 7 8
C Max. reduction 24 120 720 5,040 40,320
1 Normal 81 1,024 1.6×104 2.8×105 5.8×106

Reduced 6 13 40 100 291
Reduction factor 14 79 391 2,799 19,810
% of max 56% 66% 54% 56% 49%

2 Normal 81 7,776 1.0×106 1.7×108 3.8×1010

Reduced 6 79 1,499 35,317 9.7×105

Reduction factor 14 98 667 4,838 39,103
% of max 56% 82% 93% 96% 97%

3 Normal 1,024 1.0×106 1.3×109 2.3×1012

Reduced 13 1,499 2.7×105 –
Reduction factor 79 667 2,799 –
% of max 66% 93% 99% –

4 Normal 15,625 1.7×108 2.3×1012

Reduced 40 35,317 –
Reduction factor 391 4,838 –
% of max 54% 96% –

5 Normal 2.8×105 3.8×1010

Reduced 100 9.7×105

Reduction factor 2,799 39,103
% of Max 56% 97%

Table 3: Possible network configurations, normal and reduced (N =
network size, C = view size).

We can therefore conjecture that the state space of the N = 7, C = 3 case is
around 10 million; this is currently beyond the scope of Groove.

An interesting observation is that for view size C = 2 and network sizes
N = 6 and N = 7, the number of reachable configurations is actually very
slightly smaller than the number of possible configurations. When we observed
this first, we suspected an error in the implementation, but a closer analysis
explains this behaviour: in the push policy, any configuration in which no node

C N 4 5 6 7
2 Total state count 945 1.2×105 1.9×107 –

Reduced state count 80 1,850 56,843 1.5×106

Reduced configurations 6 79 1,498 35,314
3 Total state count 321 2.3×107 –

Reduced state count 321 56,843 –
Reduced configurations 13 1,499 –

4 Total state count 3.9×105 –
Reduced state count 1,247 1.7×106

Reduced configurations 40 35,317
5 Total state count –

Reduced state count 4,555
Reduced configurations 100

Table 4: Reachable states and (stable) configurations in the “push”
protocol (N = network size, C = view size).

11



Refinement algorithm Naive Paige-Tarjan
Symmetry breaking No Yes No Yes
Predicted isomorphisms 1,509,212 1,395,789 1,510,256 1,397,223
False pos Hash 113,817 394 114,867 1,829

% of predicted 7.5% 0.0% 7.6% 0.1%
Colouring 113,423 0 113,005 0
% of predicted 7.5% 0.0% 7.5% 0.0%

Time (ms) Total 632,634 492,700 585,274 587,148
Iso check 67,656 60,125 174,659 184,404
% of total 11% 12% 30% 31%
Hashing 28,572 41,491 124,415 153,536
% of iso check 42% 69% 71% 83%
Searching 23,000 1,412 20,818 1,481
% of iso check 34% 2% 12% 1%

Table 5: Performance of the isomorphism checking algorithm in
various versions, for N = 7, C = 2 and the push policy

shares a peer with any of its predecessors must be unreachable, unless it is the
initial configuration. Such configurations can be constructed as soon as N ≥ 3C.

Isomorphism checking. Apart from the achieved reduction, an interesting
question is how well our algorithm for isomorphism checking performs. To be
precise, we may ask the following questions:

1. How many false positives does the hash function HC give rise to?
2. How many false positives does the colouring function C give rise to?
3. How much time is spent in isomorphism checking?
4. How much of this time is spent calculating the colourings, and how much

searching for an isomorphism within the remaining space?

These questions are answered in Table 5 for the following four cases: our naive
partition refinement and the Paige-Tarjan algorithm, both with and without
symmetry breaking. The results were obtained using a 64-bit JVM (version
1.5) running on a Intel Xeon X5355 (2.66GHz) with 20GB of memory.

An analysis of the results gives rise to the following observations:

• The very simple calculation of HC from C, defined in (1), actually performs
rather well: it gives rise to a negligible number of additional false positives
(with respect to the false positives of C itself).

• The symmetry breaking phase during invariant colouring clearly pays off:
the number of false positives of the colouring drops to zero, and the time
spent searching for isomorphisms drops off correspondingly.

• The Paige-Tarjan algorithm, which has a better worst-time complexity
than our naive implementation (O(m log n) versus O(mn), where n is the
number of nodes), nevertheless performs worse. We speculate that this is
due to the fact that the algorithm has a rather large overhead, whereas
the graphs in question are actually relatively small.

12



As an aside, we note that the absolute timing figures should be taken with a
grain of salt. Groove is implemented in Java, which has unpredictable timing
behaviour due to the built-in automatic garbage collection, and moreover, the
results were obtained on a server shared with other users. Most of the time
not spent in the isomorphism check is actually spent in graph matching, which
is a major issue in graph transformation. Nevertheless, in [7] we have shown
that (for this case study) Groove outperforms a distributed implementation of
µCRL, both in performance and in the size of the models that can be explored.

Stochastic model checking. To the model described above we added prob-
abilities, transition rates and reward measures, and we calculated long-run av-
erages of the rewards. This analysis is cubic in the size of the state space, so
the reported symmetry reduction is instrumental in scaling to larger models.
In [7] we also speculated on the use of CSRL to model check further stochastic
properties, such as “Does the configuration become disconnected with a certain
probability after a certain amount of time?”. Since our symmetry reduction
preserves properties of this logic, it continues to be useful for that purpose.

5 Conclusion

Summarising, the contributions of this paper are the following:

• We propose to use symmetry reduction by collapsing isomorphic states.
This has a greater potential for reduction than some of the existing meth-
ods but was thought to be prohibitively expensive.

• We have shown that this reduction preserves resource bisimilarity, and
hence preserves all properties in stochastic logics (besides the usual tem-
poral properties).

• We have described and implemented an algorithm for the detection of
isomorphic representatives in a set of previously explored states, based on
the concept of invariant colourings, combining and adapting two existing
algorithms. Though the worst-time complexity is not polynomial, our
experience is that for models encountered in practice this works well.

• We have shown the effectiveness of the symmetry reduction through a case
study involving a model of an ad-hoc network peer sampling protocol.

Of course, it is dangerous to draw conclusions about the general effectiveness of
the method based on a single experiment. However, earlier experiments reported
in [19] on some other examples (including the standard dining philosophers
problem, a mutual exclusion protocol and a concurrent list append function,
but using only naive refinement and no symmetry breaking) showed comparable
results. We conclude that isomorphism-based symmetry reduction can pay off,
despite the sombre opinion expressed in [10] (see the introduction).

Related work. In the introduction we have already referred to the original
work on symmetry reduction, as well as some of the follow-up. Let us stress
again that, since we are interested in system properties that are preserved by
(resource) bisimilarity, we are content with a relation that is weaker than global
symmetry (relying on automorphisms of the entire state space) studied in, e.g.,

13



[5, 12]. Rather, for the purpose of this paper we concentrate on local sym-
metry and assume that this implies resource bisimilarity (through the concept
of graph-based transition system, Definition 6) — observing that this indeed
holds true for all specification formalisms we are aware of, provided that the
underlying graphs encode all structural state information relevant to the be-
haviour. Thus, we actually avoid the question that is at the core of [5, 9],
namely under what circumstances local symmetry implies global symmetry (in
[5]) or bisimilarity (in [9]). Indeed, we do not have any claim as to optimality
of the reduction, as in [9]).

The closest in aim to our work is by Iosif, Bosnacki and others in [4, 10, 11,
21], in the context of software model checking. The differences between these
approaches and our work are several:

1. Their graphs are specialised to model processes and heaps, and the sorting
criteria developed are dedicated to that structure. It is not easy to see how
to encode the ad-hoc networks studied in Section 4 into their framework,
without losing symmetries.

2. We always test for full isomorphism, rather than relying on heuristics.
Though this is prohibitively expensive in the worst case, the experiment
of Section 4 shows that this can pay off for nontrivial systems.

3. A disadvantage of our framework is that it does not give rise to canonical
state representatives. Instead, we store the state space as a hash function,
and apply the potentially expensive search algorithm of 6 to look up states.

Future work. To further improve our results, there is an alternative approach
that we plan to try out: namely, to fully exploit the canonical labellings gen-
erated by McKay’s algorithm in [15]. Compared to the invariant colourings
of Definition 9.2, the canonical labelling L satisfies a weaker condition, viz. if
G ∼= H then there is an isomorphism f : G ∼= H such that L(G) = L(H) ◦ f ,
rather than this condition holding for all isomorphisms. However, L is canon-
ical in the sense that the inverse implication also holds, and moreover, L(G)V

and L(G)E are guaranteed to be injective — at the potential cost of exponential
worst-time complexity, as must be the case due to Observation 5. However, [16]
reports that “hard graphs” are rare, and we may conjecture that it is unlikely
to find them in the systems we are modelling.

Using L, we might be able to improve our results, because it then becomes
possible to use canonical graph representatives as in other existing work on
symmetry reduction, thus removing the disadvantage noted in item 3 above.

References

[1] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking
continuous-time markov chains by transient analysis. In E. A. Emerson and A. P.
Sistla, eds., CAV, vol. 1855 of LNCS, pp. 358–372. Springer, 2000.

[2] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. On the logical char-
acterisation of performability properties. In Montanari, Rolim, and Welzl, eds.,
ICALP, vol. 1853 of LNCS, pp. 780–792. Springer, 2000.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

14



[4] D. Bosnacki, D. Dams, and L. Holenderski. A heuristic for symmetry reductions
with scalarsets. In J. N. Oliveira and P. Zave, eds., FME, vol. 2021 of LNCS, pp.
518–533. Springer, 2001.

[5] E. M. Clarke, S. Jha, R. Enders, and T. Filkorn. Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design, 9(1/2):77–104, 1996.

[6] F. Corradini, R. D. Nicola, and A. Labella. Graded modalities and resource
bisimulation. In C. P. Rangan, V. Raman, and R. Ramanujam, eds., FSTTCS,
vol. 1738 of LNCS, pp. 381–393. Springer, 1999.

[7] P. Crouzen, J. C. van de Pol, and A. Rensink. Applying formal methods to
gossiping networks with mCRL and Groove. ACM SIGMETRICS Performance
Evaluation Review, 36(3):7–16, Dec. 2008.

[8] E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: on
branching versus linear time temporal logic. J. ACM, 33(1):151–178, 1986.

[9] E. A. Emerson, J. Havlicek, and R. J. Trefler. Virtual symmetry reduction. In
LICS, pp. 121–131, 2000.

[10] R. Iosif. Exploiting heap symmetries in explicit-state model checking of software.
In ASE, pp. 254–261. IEEE Computer Society, 2001.

[11] R. Iosif. Symmetry reduction criteria for software model checking. In Bosnacki
and Leue, eds., SPIN, vol. 2318 of LNCS, pp. 22–41. Springer, 2002.

[12] C. N. Ip and D. L. Dill. Better verification through symmetry. Formal Methods
in System Design, 9(1-2):41–75, 1996.

[13] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.
Gossip-based peer sampling. ACM Trans. Comp. Syst., 25(3), 2007.

[14] D. Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–
354, 1983.

[15] B. D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87,
1981.

[16] B. D. McKay. nauty User’s Guide (Version 2.4), Oct. 2007. See
http://cs.anu.edu.au/˜bdm/nauty/.

[17] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal
of Computing, 16(6):973–989, 1987.

[18] A. Rensink. The Groove simulator: A tool for state space generation. In J.
Pfalz, M. Nagl, and B. Böhlen, eds., AGTIVE, vol. 3062 of LNCS, pp. 479–485.
Springer, 2004.

[19] A. Rensink. Isomorphism checking in Groove. In Zündorf and Varró, eds.,
GraBaTs, vol. 1 of Electr. Comm. of the EASST, September 2007.

[20] C. Stirling. The joys of bisimulation. In L. Brim, J. Gruska, and J. Zlatuska, eds.,
Mathematical Foundations of Computer Science (MFCS), vol. 1450 of LNCS, pp.
142–151. Springer, 1998.

[21] M. Veanes, J. P. Ernits, and C. Campbell. State isomorphism in model programs
with abstract data structures. In J. Derrick and J. Vain, eds., Formal Techniques
for Networked and Distributed Systems (FORTE), vol. 4574 of LNCS, pp. 112–
127. Springer, 2007.

[22] E. W. Weisstein. Isomorphic graphs. From MathWorld – A Wolfram Web Re-
source. http://mathworld.wolfram.com/IsomorphicGraphs.html, 2002.

15

http://cs.anu.edu.au/~bdm/nauty/nug-2.4b7.pdf
http://mathworld.wolfram.com/IsomorphicGraphs.html

	Introduction
	Definitions
	Membership Checking Modulo Isomorphism
	Example: Ad-Hoc Network Connectivity
	Conclusion

