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Abstract In this paper we present case studies that describe
how the graph transformation tool groove has been used to
model problems from a wide variety of domains. These case
studies highlight the wide applicability of groove in partic-
ular, and of graph transformation in general. They also give
concrete templates for using groove in practice. Further-
more, we use the case studies to analyse the main strong and
weak points of groove.
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1 Introduction

In this paper, we take the perspective of one particular model-
ling paradigm, graph transformation, and one particular tool
supporting this paradigm, groove. We target the following
groups of readers:
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– Those who want to get a general impression of the scope
of graph transformation, and what a specification in this
paradigm looks like;

– Those who want to get acquainted with groove, and learn
about its features and strengths;

– Those who already know graph transformation or
groove, and want to have some templates and examples
of how to apply it in different contexts.

1.1 Background

Graph transformation has been advocated as a flexible for-
malism, suitable for modelling systems with dynamic con-
figurations or states. This flexibility is achieved by the fact
that the underlying data structure, that of graphs, is capable
of capturing a broad variety of systems.

Essentially, whenever a system consists of entities with
relations between them, this can be naturally captured by a
graph in which the nodes stand for the entities and the edges
for the relations. If, in addition, a main characteristic of such
a system is that entities are created or deleted and the rela-
tions between them can change, then the transformation of
those graphs comes into play.

A conceptual introduction to graph transformation can be
found in [19]. The focus of this article is different. Rather
than going into the theoretical background, we illustrate the
uses of graph transformation on the basis of one particular
tool that is capable of providing fast, hands-on experience,
namely groove (see [30]). We present four case studies from
quite different domains, collected over the last 3 years, that
show different features of graph transformation in general
and of groove in particular. Then, we more briefly review a
number of other, previously published applications.
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1.2 Introduction to groove

In this section, we provide an overview of the features of the
groove tool. We describe the latest version, 4.0. Some of
the older cases were developed with previous versions and
consequently do not use all tool features, even where it would
have been convenient to do so.

Graphs

Graphs in groove consist of labelled nodes and edges.1 An
edge is a binary arrow between two nodes. Node labels can
either be node types or flags; the latter can be used to model
a boolean condition, which is true for a node if the flag is
there and false if it is absent.

groove can work either in an untyped or in a typed mode.
In the untyped mode, graphs can be arbitrary: there are no
constraints on the allowed combinations of node types, flags
and edges. In the typed mode, all graphs and rules must be
well-typed, meaning that they can be mapped into a special
type graph. This is checked statically for the start graph and
the rules: the theory then ensures that well-typedness is pre-
served under transformation. The type graph determines the
allowed combinations of node types and edges.

Since typing is a new feature, only one case (Sect. 4) uses
node types, and another (Sect. 5) uses full types.

Simple rules and application conditions

Graphs are transformed by applying rules. A rule consists of
the following:

– A pattern that must be present in the host graph in order
for the rule to be applicable;

– Subpatterns that must be absent in the host graph in order
for the rule to be applicable;

– Elements (nodes and edges) to be deleted from the graph;
– Elements (nodes and edges) to be added to the graph;
– Pairs of nodes that are to be merged.

All these elements are combined into a single graph; col-
ours and shapes are used to distinguish them. Alternatively,
one may think in terms of application conditions and modi-
fications: of the former, we distinguish positive (which must
be present in order to apply a rule) and negative (which must
be absent in order to apply a rule) ones, whereas of the latter,
we distinguish deletion and creation of elements. Figure 1
shows a small example illustrating most of these concepts:

1 Note that this is an extension: past versions of groove only supported
edge labels, node labels had to be mimicked by self-edges.
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Fig. 1 Example groove rule and legend
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Fig. 2 Example application of the rule in Fig. 1

– The black (continuous thin) “reader” elements, in this
case two nodes labelled A and C, must be present and
are preserved—in fact, they form a positive application
condition;

– The red (dashed fat) “embargo” elements, in this case a
parent-labelled edge with a P-labelled target node, must
be absent in the graph—in fact, each connected subgraph
of embargo elements forms a negative application condi-
tion;

– The blue (dashed thin) “eraser” elements, in this case a
child-labelled edge from the A-node to the C-node, must
be present and are deleted;

– The green (continuous fat) “creator” elements, in this case
a parent-labelled edge with a P-labelled target node, are
created.

The overall effect of the rule is to search for A- and
C-nodes connected by a child-edge but without a parent-
edge to a P-node, and to modify this by removing the
child-edge and adding a parent-edge to a fresh P-node. For
instance, the rule can be applied to the graph on the left hand
side of Fig. 2 in two ways, one of which results in the graph
on the right hand side. (The other application removes the
other child-edge.)

The core functionality of groove is to recursively apply
all rules from a predefined set (the graph transformation sys-
tem) to a given start graph, and to all graphs generated by such
applications. This results in a state space consisting of the
generated graphs. The strategy according to which the state
space is explored (e.g., depth-first, breadth-first or linear) can
be set as a parameter.
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Attributes

Nodes in a graph typically stand for instances of some
resource or concept. For modelling most systems, however, it
is also necessary to include data fields, containing booleans,
integer numbers or strings. Such data fields are usually called
attributes. groove supports attributes by treating them as
special edges that do not point to a standard node, but to a
node that corresponds to a data value. Graphically such edges
are usually represented by expressions of the form “x = 12”,
rather than by x-labelled arrows pointing to a 12-labelled
node.

Regular expressions

Besides ordinary edges, a rule may include edges carry-
ing regular expressions. These will be matched in the host
graph by searching for a path whose labels satisfy the regular
expression. This especially allows the specification of cycles
or the transitive closure of edges.

Regular expressions may also contain wildcards, which
are matched by any label in a given set. Moreover, wildcards
may be named; such a name is effectively a variable for edge
labels.

Quantification

One of the special features of groove is the support of uni-
versal quantification in rules (see [33]). A universally quan-
tified (sub)rule is one that will be applied to all subgraphs
that satisfy the relevant application conditions, rather than
just a single one as in the standard case. Such a rule can
itself be much more concise, and also result in a smaller state
space, than the equivalent set of rules that would ordinar-
ily be needed. In fact, quantification can be nested in the
sense that universally quantified rules can contain further
existential subrules, and vice versa. Among other things, this
makes it possible to formulate powerful application condi-
tions (see [31]).

Control

The standard behaviour of groove is to attempt the applica-
tion of arbitrary rules at any point in time. There are, however,
two further methods to control and direct the application of
rules. A most straightforward mechanism is to assign pri-
orities to rules: low-priority rules may only be applied if
no higher-priority rule is applicable. A more sophisticated
mechanism is to use groove’s control language.

A control program is imposed on top of a graph transfor-
mation system and specifies the allowed order of application
of the rules of that system, referring to the rules by name.
For instance, the control program a; try {b;} else {c;}

specifies that first the rule named “a” must be applied, after
which “b” is tried; if “b” is not applicable, “c” is applied.
If rule “a” is not applicable in the beginning, then nothing
happens. Other constructs offered by the language include:

– Looping, including an “as-long-as-possible” construct;
– A random choice between rules;
– Simple (non-recursive) function calls.

State space exploration

The most distinguishing feature of groove, compared with
other graph transformation tools (see Sect. 7 for an overview),
is the fact that it does not just carry out a single sequence of
transformations from a given start state, but can explore and
store the entire state space of reachable graphs. This pro-
vides a rich source of information for further analysis. In
fact, groove offers a choice of the exploration strategy to be
used:

– Depth-first full exploration, also with on-the-fly Linear
Temporal Logic model checking;

– Breadth-first full exploration. In some grammars, this
enables finding shortest paths to certain graphs;

– Linear, random linear, and conditional exploration. This
allows simulation without covering all states, for instance
if the state space is too large.

1.3 Structure

The remainder of this paper is structured as follows. In the
next four sections, we describe four groove case studies
undertaken in the last few years:

– Section 2: Model transformation (from bpmn to bpel);
– Section 3: Verification of a leader election protocol;
– Section 4: Analysis of security policies;
– Section 5: Simulation (modelling movements of ants).

For each of these case studies, apart from describing in
some detail the actual solutions, we stress the special aspects
of the problem and the groove features used to solve it. In
particular, Table 5 shows which groove feature is used in
which case study.

In Sect. 6, we briefly review a number of other applications
of groove in different domains. Finally, Sect. 7 contains an
evaluation of the tool, based on experiences drawn from the
case studies, along with a comparison between groove and
other tools.
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2 Model transformation: from BPMN to BPEL

This case study presents an example of a model-to-model
transformation. The source and target languages are bpmn

and bpel respectively, which conform to the model paradigm
defined by omg

2. The task is to transform a standard repre-
sentation of bpmn into a standard representation of bpel.

Remark This case study was performed with a version of
groove that did not yet support typing. See also Table 5.

2.1 Case description

bpmn (defined by omg, see [26]) and bpel (defined by oasis,
see [27]) are languages for describing business processes.
bpmn is a free-form graphical notation that is geared towards
user-friendly modelling, and bpel is a block-based notation
that is geared towards transparent execution. This case study
presents a solution in groove for transforming (a subset of)
bpmn to (a subset of) bpel according to the transformation
method described in [28,29].

This transformation problem was one of the challenges of
the GraBaTs 2009 workshop [17] and the groove solution
[9] was one of the 10 solutions that were submitted. See the
workshop homepage for a detailed description of all solu-
tions.

An example of equivalent bpmn and bpel models is shown
in Fig. 3. It is taken from [10] and describes the process
of publishing an article, which starts when the abstract is
approved. The article is written and submitted to the editors.
Then the writer waits for review results and submits a revised
article, which is subsequently reviewed again. Depending on
the result, the process ends or the article is edited and submit-
ted to the editors again. The process ends with the publishing
of the article. These models will be used as the running exam-
ple in the remainder of this case study.

2.2 Case features

The following features of this case study are of particular
interest for this paper and for the application of graph trans-
formation in general:

Model transformation

The translation of bpmn to bpel is a model transformation
that should make use of meta models as the description of
allowed structure. This means that the groove transforma-
tion should know about these meta models, and should oper-
ate on input that conforms to the bpmn meta model and
produce output that conforms to the bpel meta model.

2 http://www.omg.org.

Write Article

Submit Article

Revision

edit

Review Revision

(a) BPMN model (b) BPEL model

Fig. 3 Example model in bpmn and bpel

Furthermore, the groove translation should be aligned
with the standard (file) representation for bpmn and bpel

models, which is by means of xml. By operating on xml,
the input for the transformation can be exported from uml

tools, and the output can be imported back again.

Deterministic transformation

The algorithm should behave in a deterministic manner: for
each input bpmn model, it should always produce the same,
uniquely determined bpel model.

Control flow

The transformation algorithm used has a specific order in
which the input bpmn model is traversed. It begins by rec-
ognising inner patterns, which are subsequently contracted
into bpel blocks. This then allows the recognition and con-
traction of bigger patterns. The algorithm works its way to
the outer level until the model as whole has been transformed.

Due to the iterative nature of the algorithm, it is impor-
tant that individual contraction steps can be tracked in a
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user-friendly manner. This allows the correct recognition
of more complex patterns to be integrated easily into the
algorithm, and ensures that problems in later stages can be
debugged effectively.

Pattern matching

The power and usefulness of the transformation is measured
by the number of different bpmn patterns it can transform
to bpel. Some patterns are more complex than others; for
instance, a pattern with an arbitrary number of connecting
paths is more difficult to recognise (directly) than a pattern
with a fixed number of connecting paths. The number of pat-
terns that can be recognised, as well as the ease of recognition,
is a challenge for the graph transformation formalism.

2.3 Aspects of solution

The groove solution for this case study is structured in the
following five phases:

1. Initialise: translate bpmn (xml) to groove (graph).
2. Analyse gateways: create explicit connections between

opening and closing gateways that belong together;
3. Analyse sequences: mark the beginning and the end of

sequences;
4. Contract patterns: transform recognised patterns (con-

nected gateways) into bpel blocks;
5. Finalise: translate groove (graph) to bpel (xml).

The ‘wrapper’ phases 1 and 5 are translations between
xml and the internal (textual) representation of graphs that
is used by groove. These translations cannot be expressed
within groove, and have instead been realised by means of
custom xslt [42] transformations, which have to be carried
out explicitly by the user. Two xslt transformations for our
particular case are specified in [9].

Phases 2, 3, and 4 are realised within groove by means
of graph transformation rules. In total, the translation con-
sists of 46 rules (9 for phase 2, 16 for phase 3, and 21 for
phase 4). The phases will be explained further below, using
the bpmn model in groove of Fig. 4 as a running example.
Note that our representation is not structured according to a
meta model or type graph, because groove did not support
those at the time.

Phase 2: analyse connecting gateways

In this phase, an explicit pattern edge is created between
pairs of gateways that belong together. In other words, pattern
recognition is performed, but without doing contraction. This
is achieved with the following algorithm:

Default

Task
id = ”Review Revision”

Start

Cond
value = ”edit”

End

DataXOR

Task
id = ”Submit Article”

Merge Task
id = ”Write Article”

Clock
id = ”Revision”

next

next
next

next

next

next

next

next

next

next

Fig. 4 Example model in groove (after phase 1)
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Fork |DataXOR |EventXOR |Merge

last
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next

from at

first

Fig. 5 The CreateConnects rule in groove (phase 2)
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Connect

Connect
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DataXORMerge

at
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from from

pattern

pos

pos

at

from

Fig. 6 The PatternWhile rule in groove (phase 2)

1. For each outgoing edge next of each opening gateway,
create a Connect node that establishes a link between
the gateway and the target node of next;

2. Propagate Connect over basic units (and earlier recog-
nised patterns) until a closing gateway is found;

3. Recognise patterns by analysing connections (i.e. if all
Connect nodes from an EventXOR gateway lead to the
same Merge gateway, then a Pick pattern was found).

Figures 5 and 6 show two of the rules of this algorithm.
The rule in Fig. 5 creates the Connect nodes for a partic-
ular opening gateway. The non-vacuous universal quantifier
node (labelled ∀>0) ensures that a Connect is created for
each next edge in one go, and also prevents the rule from
matching if there is no next edge at all. The negative appli-
cation conditions ensure that the rule will only be applied
once for each opening gateway.

The rule in Fig. 6 detects a While pattern. It matches when
the opening Merge and the closing DataXOR are connected
by Connect nodes in both directions. After a successful
match, the rule creates a pattern edge between the gateways,
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Task
id = ”Submit Article”

Cond
value = ”edit”

MergeStart

DataXOR

Task
id = ”Write Article”

Task
id = ”Review Revision”

Clock
id = ”Revision”

End

next

next

next

next

next

next

next

next

pattern

next

Fig. 7 Example model in groove (after phase 2)

Task
id = ”Submit Article”

Cond
value = ”edit”

MergeStart

DataXOR

Task
id = ”Write Article”

Task
id = ”Review Revision”

Clock
id = ”Revision”

End

Empty

end

begin

if
next

next

next
begin

end

pattern

begin

end

Fig. 8 Example model in groove (after phase 3)

and destroys all Connect nodes that start from either the
Merge or the DataXOR (again using a ∀ node).

The result of phase 2 on the running example is shown in
Fig. 7. The main3 point is the addition of the pattern edge.

Phase 3: analyse sequences

In this phase, all the next edges in the graph are renamed
to better reflect their role. Edges leading to a ‘block’ (which
is either the largest possible sequence or a single unit that
is not part of a sequence) are renamed to begin, and edges
leading out of a block are renamed to end. Also, some other
cosmetic changes are made, including the renaming of edges
in recognised Repeat pattern to if and the insertion of Empty
node. In the example model, this leads to Fig. 8.

Phase 4: contract patterns

In this phase, the recognised bpmn patterns are contracted
into bpel blocks. Because the patterns have already been
recognised in phase 2, and additional structural information

3 In phase 2 also some additional administration, including the detec-
tion of so called quasi-patterns, takes place. In the example, this has
resulted in the deletion of a Default node.

Contracted Cond

Empty

Merge Contracted

While
Empty

DataXOR

Contracted

?exit[next,end]

condition

?entry[begin,next]

bpel

?exit

value

pattern

end

?entry
bpel

bpel

begin

end

bpel

begin

body

if

Fig. 9 The ContractWhile rule in groove (phase 4)

is available by means of phase 3, contraction is mainly an
administrative task only.

For each pattern, the following actions are carried out:

1. A bpel block node is created, and the incoming and out-
going edges of the pattern as a whole are redirected to it.

2. The paths between the opening and closing gateways are
transferred to the newly created block node. This is only
possible on paths that have already been converted, and,
therefore, consist of a single bpel block only.

3. All the remaining bpmn elements are removed from the
graph, leaving only the bpel block.

This is the same algorithm as in [28,29]. Note that the con-
straint that paths must already have been converted implies
that contraction is carried out from the inside to the outer
level.

In Fig. 9, a rule is shown which transfers While paths
from a recognised DataXOR-Merge pair to bpel nodes.
The path is assumed to be Contracted, and its repre-
sentation is changed to While. Note the wildcard label
?entry[begin,next], which matches on either begin or next
(see also Sect. 1.2), and stores its match in the ?entry var-
iable. This variable is then re-used in the rule to create an
edge with the same label.

The result of phase 4 on the example model is shown in
Fig. 10. This model can now be transformed into the final
bpel model of Fig. 3b with a xslt transformation [9].

2.4 Evaluation

The transformation of bpmn to bpel can be realised in
groove, with the help of wrapper xslt transformations. The
encountered strong and weak points of the use of groove

will be evaluated below in relation to the earlier introduced
case features.
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body

next
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Fig. 10 Example model in groove (after phase 4)

Using groove for model transformation

The solution performs model-to-model transformation by
translating a standard xml representation of bpmn to a stan-
dard xml representation of bpel. This requires an external
extension with xslt, which is a weak point of groove.

The solution does not make use of a meta model or type
graph to define the structure of well-formed graphs. As a
result, more effort was required, both for internalising bpmn

and bpel models, and for communicating the custom repre-
sentation between different people working on the project.

This was a weak point of groove when this case study
was performed, because at that time there was no support for
type graphs. However, this case study was one of the main
arguments to add type graphs to groove, and the current
version of groove no longer has this weak point.

Using groove for deterministic behaviour

Graph transformation can give rise to non-determinism: it
is allowed to apply rules in different orders, and the same
rule can sometimes be applied in different ways. This behav-
iour is supported in groove, as it builds a labelled transition
system (LTS) in which all explored rule applications can be
stored explicitly (see also Sect. 1.2).

In this case study, we are only interested in a single trans-
formation path that leads to a single result. For this purpose,
we constructed the system in such a way that the rules are
confluent, which ensures that all paths converge. We then
used the linear exploration strategy of groove to compute
a single path to the end result. Using this strategy, finding
the output bpel model can be performed by groove without

building a branching LTS, and takes less than one second for
all the (small) examples in the case study.

Note that for (manually) checking that our rule system
is confluent, we made use of the full state exploration of
groove. On all of the examples we tried, the full state space
generated by our rule system converges to a single result.

Using groove for specific control flow

The control flow of the algorithm was modelled in groove

mainly by rule priorities, which ensure that certain rules are
always applied before others. In cases where this does not
suffice, additional information was added to the graph which
influences the enabledness of rules.

A specific strong point of groove for building prioritised
rule systems is its user-friendly interface, which allows the
LTS to be inspected in many ways. The possibility to inspect
the applicability of rules on each intermediate state of the
state space greatly helps in determining the right rule priori-
ties and the required rule interaction.

Using groove for complex pattern matching

The realised transformation in groove is able to identify
arbitrary well-structured patterns (with an arbitrary num-
ber of paths between the opening and the closing gateway),
as well as several quasi-structured patterns. This expressive
power is mainly due to the separation of pattern recognition
and contraction (which is an aspect of the solution), but the
availability of quantified rules (see Sect. 1.2) in groove is a
contributing factor as well. Examples of quantified rules are
shown in Figs. 5, 6. This case study uses quantified rules in a
basic manner only; for a more elaborate use see Sect. 4. Still,
the use of quantified rules is a strong point of groove, also
in this case study.

To summarise…

groove can be used for expressing the bpmn to bpel trans-
formation, but as the tool is not specifically tailored for model
transformation, several steps had to be carried out manually
(such as the xml I/O). Also, the lack of type graphs (at the
time of writing) lessened the ease of use.

Still, the transformation itself was not difficult to build,
mainly due to the user interface (w.r.t. the LTS), the linear
exploration strategy and the quantified rules.

3 Verification of a leader election protocol

In this section, we present a case study that illustrates how
groove can be used to verify communication protocols of
distributed systems.
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Fig. 11 A ring network of size
three

3.1 Case description

A simple distributed leader election protocol [5] works as
follows. There is a set of processes arranged in a ring, i.e.,
every process has a unique predecessor and a unique suc-
cessor. Furthermore, each process has a unique identity and
there exists a total order over the set of identities (we assume
that identities are natural numbers). The leader will be the
process with the smallest identity; however, this information
is not known at the start of the protocol.

Every process generates a message (MId) with its own
identity and sends it to its successor. A received message with
content MId is treated as follows by a process with identity
PId:

– if MId < PId, the process forwards the message to its
successor;

– if MId = PId, the process declares itself the leader;
– if MId > PId, the process discards the message.

A ring network with three processes is shown in Fig. 11.
Each process has an identity and is connected to its successor.

3.2 Case features

The following features of this case study are particularly
interesting.

Prototyping

The freedom that processes have in conducting different
actions in different order due to the lack of a centralised
controller leads to a high degree of parallelism. This level of
parallelism is usually very hard to capture in models. Con-
sequently, analysis and verification of the protocols are also
very difficult. Therefore, a tool which enables the rapid pro-
totyping of such systems can be very useful in the process of
devising such protocols.

Verification

The main reason for modelling this case is to verify certain
properties of the protocols for all different feasible scenar-
ios which can occur as the result of different interleaving of
events. To obtain this purpose, we need to generate the whole

ProcessProcess

Process Ids
id = 3
id = 2
id = 1

next

nextnext

Fig. 12 The start state of a process ring of size three

Ids

Process

idid

id

(a) Rule pk-id

Process

Process

Message

active

at

id

active

next

id

(b) Rule c-msg

Fig. 13 Initialising rules of the leader election protocol

state space. Moreover, on the generated state space we need
to verify both liveness, i.e., the protocol always declares a
leader for all the configurations, and safety, i.e., never more
than one leader is elected. Therefore, all generated paths need
to be checked for these properties.

General rules

The same protocol in this case should work for rings with dif-
ferent sizes. In other words, the size of the start graph can be
chosen parametrically while the set of rules stays unchanged.

3.3 Aspects of solution

Figure 12 shows the start graph modelled in groove. It con-
sists of an example network with three processes modelled as
nodes connected in a ring topology. There is an extra auxil-
iary node Ids containing identities ranging 1–3. This node is
used to generate all possible permutations of processes with
different identities in the network. The graph can easily be
extended for any arbitrary number of processes. Note that
the selection of identities among numbers from 1 to n can
be regarded as a canonical representation of any arbitrary
sequence of n identities.

As seen in Fig. 12, initially processes do not have any
identity assigned to them. Rule pk-id, shown in Fig. 13a, has
the highest priority, and it assigns identities to the processes
before any other rule can be applied. groove automatically
makes all possible non-deterministic choices of all applicable
rules in generating the state space. In this way, we generate
all different permutations of identity assignments as required
for the protocol verification. Rule c-msg, shown in Fig. 13b,
creates the initial messages and marks the processes as active
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Process
active

true

Message

π0

lt

at

id

π1

id

(a) Rule d-msg

Process
active

true

Message

Process

id

at

at

gt

π1

next

π0

id

(b) Rule prop

Fig. 14 Message relaying rules of the leader election protocol

Fig. 15 Electing leader rule of
the protocol

Message
Process
active

true

leader

π1

idid

eq

at

π0

to avoid the sending of more than one initial message per pro-
cess.

Fig. 14 shows rules d-msg and prop. The d-msg rule
discards messages whose identity is higher than the identity
of the receiving process. Finally, rule prop relays a message
on a process if the identity of the message is smaller than
that of the process. Finally, rule elect shown in Fig. 15 elects
the leader when a process receives a message with its own
identity.

The state space of the protocol is obtained by applying the
rules shown in Figs. 13, 14 and 15 on the start state of Fig. 12.
The state space is shown in Fig. 16 as a labelled transition
system (LTS) in groove. States are displayed as rectangles
and the names of the rules applied for transformations from
one state to the other are written as labels of the transitions
between states. The top state (s1, in green) shows the start-
ing state and the bottom states (s66 and s70, in red) show the
final states, namely, no other state can be reached from these
states by applying any rule.

The state space consists of two parts. In the upper section
(the states above states s11 and s12) only rule pk-id is applied
to create the ring. The lower section is where the rules related
to the protocol itself are applied. A worthwhile point about
the upper part of the state space is that it creates all permu-
tations of a network with size n. For a network with size n,
there are n! different permutations of nodes which determine
the different number of orderings in which rule pk-id can
be applied on the nodes. However, we know that due to the
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Fig. 16 The LTS of the protocol
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Fig. 17 The verification rules

symmetry of a ring, only (n − 1)! different rings exist with
the same set of nodes. Not detecting the identical states in
this case leads to a state space that is almost n times bigger.
groove automatically finds the identical states (isomorphic
graphs) and avoids duplicating already existing states. This
can be seen in Fig. 16, all six (3!) different feasible orders
of applications of pk-id are shown in states s5 to s10, which
are reduced to two states: s11 and s12. The protocol is only
checked on these two generated rings.

3.4 CTL model checking

groove allows us to verify properties specified in CTL
(Computation Tree Logic). To verify the generated LTS, we
add two rules to assist us with the model checking part.
Figure 17 shows these rules. The liveness property holds if
the rule e-leader is applicable. The safety property is only
true if the rule m-leaders is not applicable.

The liveness property is preserved if we have no counter-
example to AF(e-leader), meaning that all paths in the the
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Table 1 Experimental results
for leader election protocol Processes Rings States Transitions Time (s)

3 2 70 147 <1

4 6 677 1,790 <1

5 24 9,358 30,457 6

6 120 168,422 656,214 66

7 720 4,747,432 23,914,934 4,058

8 5,040 Out of memory

LTS eventually lead to the choice of a leader. The safety
property can be verified if there is no counterexample to
AG(!m-leaders), which means that there should not be two
different leaders in any state of the LTS.

3.5 Experimental results

We tested our rule set for rings with three to eight processes.
For our tests we used a machine with two Quad Core Xeon
2.66 GHz processors and 16 GB memory.

The results are shown in Table 1. The first two columns
show the number of processes (size of the ring) and the num-
ber of different configurations for the rings of the given size,
respectively. The results of the experiments are given in three
columns. The first two columns denote the number of states
and transitions in the generated transition system and the third
column shows the total amount of time used for both the state
space generation and the verification. We have verified our
results using the formulae explained in Sect. 3.4.

3.6 Evaluation

In this section, the strong and weak points of the given solu-
tion are discussed in relation with the case features explained
in Sect. 3.2.

Using groove for prototyping

We have modelled a leader election protocol which contains
a high degree of parallelism. The simplicity of the rules in
the proposed solution shows that the modelling phase was
intuitive. Part of this simplicity is due to the absence of typ-
ing. In this case, the use of a type graph is not necessary
and the solution does not benefit from it. Besides, all rules
in groove are visual which is very useful in this case study.
In [17], more elaborate solutions were proposed, on three dif-
ferent variants of the protocol, which is a good evidence on
how easy different variations of a problem can be modelled
and analysed.

Using groove for verification

For the given experiments, the whole state space was gen-
erated and both liveness and safety properties were verified
using CTL formulae. No counter example was found for our
experiments which proves the correctness of the protocol for
rings with size smaller than eight nodes. Furthermore, no
assumptions were imposed on the message relaying (except
that each process has a buffer of size n). Hence, we have ver-
ified that the protocol works regardless of the buffer policy
adopted (e.g., FIFO, LIFO, etc). This is a very interesting
general result.

General solution in groove

As seen from the solution, the same rule system works on
networks of different sizes. But the whole verification pro-
cess is not general for a ring of an arbitrary size. However,
only the start graph needs to be adapted for any given ring
size, which can be done with little effort, while the rest of the
rule system stays intact.

To summarise…

groove can be used as a rapid prototyping tool which is easy
to use in all three phases of modelling, analysis and verifica-
tion. As the result, groove can provide a great assistance in
devising network protocols, where non-determinism as well
as parallelism is an essential parts. However, the problem
does not scale in groove for problems with large sizes. This
is because the size of the state space grows dramatically as
the ring size increases. This is the well-known state space
explosion problem, common to all model checking tools.

4 Analysis of security policies

In this section, we present an organisational security frame-
work and describe how groove can be used to model and
analyse security properties within such a framework.
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Physical node

Digital node
1 - Hall
2 - Secretary Room
3 - Computer Room
4 - Master Key
5 - Secretary
6 - Employee
7 - Server
8 - Secretary Key
9 - Memory Stick

10 - Sensitive Data

Fig. 18 Example of an environment graph of the Portunes framework

4.1 Case description

The Portunes security framework (developed by Dimkov,
Pieters, and Hartel [12]) has two main goals: (1) to define
a unified model that captures the relations between physical,
digital and social security domains, and is able to describe
security attacks which span these three domains; and (2) to
provide analysis techniques to detect security breaches in the
environment of an organisation.

Environment graphs

Portunes uses an environment graph as a snapshot of a certain
configuration of the organisational environment. The graph
stratifies nodes in three layers. The spatial layer is formed by
the facilities of the organisation, e.g., rooms and halls. The
physical layer consists of objects located inside the facili-
ties, such as people, computers, and keys. The digital layer
comprises software and data, such as operating systems and
databases.

Figure 18 shows an example of an environment graph in
Portunes where membership in each of the three layers is
identified by different node shapes. Edges between spatial
nodes represent neighbourhood. In this example, we have a
hall (node 1) that connects two other rooms (nodes 2 and
3). All other edges represent a containment relation. For
instance, we have a secretary room (2) that contains the mas-
ter key (4) and the secretary (5), which in turn is in possession
of her own key (8). For brevity, we will refer to nodes in the
environment graph with simple abbreviations of the names
given in Fig. 18.

Containment relation

The environment graph presented in Fig. 18 is one element
of a set of possible entity configurations. Some of these enti-
ties (graph nodes) may have active behaviour. For example,
people can move around rooms and can exchange objects
that they are carrying. To capture this dynamic behaviour it
is necessary to transform one given environment graph into
another, by removing or adding containment edges. In order

Table 2 Containment relation for the environment graph of Fig. 18

ln 1 2 3 4 5 6 7 8 9 10

1 - Hall 1 1 1 1 1 1

2 - SRoom 1 1 1 1 1 1

3 - CRoom 1 1 1 1 1 1

4 - MKey

5 - Sec 1 1 1

6 - Emp 1 1 1

7 - Server 1 1

8 - SKey

9 - MStick 1

10 - SData

for these containment changes to make sense in reality, they
must obey a containment relation �ln that defines whether a
node can contain another node or not.

The containment relation for our example is given in
Table 2, as a boolean table. A value of 1 indicates that the
row element can contain the column element. A value of 0,
presented in Table 2 as an empty cell, shows that such con-
tainment is not possible. Relation �ln is not symmetric, e.g.,
we have that MStick can contain SData but not vice-versa.

It is important to note that relation �ln is used only to rep-
resent containments that are feasible in reality. This relation,
however, does not enforce security policies.

Actions and access control policies

An action is a primitive that manipulates nodes of an envi-
ronment graph. Portunes defines three basic actions:

– Login: which allows a node to “enter” another, i.e., the
action adds a containment edge to the graph;

– Logout: which allows a node to “leave” another, i.e., the
action removes a containment edge from the graph;

– Eval: which allows a node to “delegate” an action to
another node.

In the framework definition [12], the operational semantics
of these basic actions is formalised by a set of inference rules.

Each node of the environment graph has one or more
access control policies that allow the execution of a subset
of basic actions, provided that the acting node has the proper
security privileges. An access control policy is composed by
three ways of authentication:

– Identity based: meaning that the acting node must have
the required identity (i.e., name) for the action to be
allowed;

– Location based: meaning that the acting node must be in
the required location for the action to be allowed;
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– Credentials based: meaning that the acting node must
possess all elements of a set of credentials (physical or
digital nodes) for the action to be allowed.

Here, we informally describe the security policies for
some of the nodes of the environment graph of Fig. 18. In
the next section, we show how these policies are modelled
in groove (see Fig. 21).

– SRoom. To enter the secretary room: (a) no identity is
needed; (b) the actor must be in the hall; and (c) the actor
must have either the secretary key or the master key. To
leave the secretary room it suffices to be inside it.

– CRoom. The security policies for node CRoom are sim-
ilar to SRoom with the exception that it is only possible
to enter the computer room with the master key.

– Server. The policy for node Server is location based,
and it states that it is only possible to login or logout in
the server from the computer room.

– Sec. The policy for node Sec is identity based and it
defines that the secretary allows the employee to perform
any basic action.

Attack scenarios

Let us assume in our running example that the employee
has malicious intentions and wants to copy the sensitive data
stored in the server to his memory stick. Initially, he is not
able to do it, since he does not have the proper credentials (the
master key to open the computer room). However, there is at
least one sequence of actions that allows him to accomplish
his goal. This constitutes an attack scenario.

A textual description of a possible attack scenario is as fol-
lows. The secretary moves to the hall. There, the employee
asks the secretary to borrow her key, for example, to pick
office supplies in her room. Since the secretary trusts the
employee (her access policy defines this), she lends him her
key. The employee then goes to the secretary room, retrieves
the master key, moves back to the hall and returns the secre-
tary key to her. After she returns to her room, the employee
is able to enter the computer room and copy the data from
the server to his memory stick.

In the attack scenario just described, no security policy is
violated when the attack is performed. In our simple example
such security breach can easily be discovered, but in more
complex environments this task is far from trivial.

4.2 Case features

For the framework to be useful in practise, its implementation
should provide the following desired features.

Automatic generation of scenarios

The interleaving of actions from different nodes gives rise
to a huge amount of non-determinism, which renders a man-
ual search for security breaches unfeasible. Tool automation
is, therefore, necessary to systematically search (i.e., gener-
ate) attack scenarios. An additional important feature is the
possibility to simulate an attack in a step-wise fashion, to
allow the user of the framework to reproduce and analyse
the generated scenarios.

Scalability

The environment graph describing an organisation can be
formed by hundreds or even thousands of nodes. The frame-
work implementation should properly scale to such graph
sizes, providing results within a reasonable time limit.

General solution

Security policies differ from one organisational environment
to another; however, the mechanism to enforce such policies
is described in the framework by general inference rules.
Implementation of such rules should preserve their general
property, to avoid the need to define specific security enforce-
ment rules for each environment analysed.

Diverse audience

The framework is intended to be used by a broad audience,
with different backgrounds, e.g., security consultants and
company managers. To ease the understanding of the func-
tionality of the implementation, only elements of the security
domain should be visible. In particular, the theoretical intri-
cacies of the framework do not concern the users, as long as
the resulting analysis is sound.

4.3 Aspects of Solution

The groove solution for this case study, i.e., our framework
implementation, is elaborated in the following manner:

1. A Portunes environment graph, the containment relation
�ln, and the environment security policies are all mod-
elled in a groove state graph.

2. The behaviour described by Portunes operational seman-
tics, the enforcement of security policies, and the possi-
ble actions of active nodes are defined by transformation
rules in groove.

3. Attack scenarios are generated by performing state space
exploration in groove.

In the following, we discuss each of these items in detail.
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Fig. 19 The environment graph of Fig. 18 represented in groove
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Fig. 20 Sample of the containment relation �ln represented in groove

Environment graphs in groove

The mapping of Portunes environment graphs to groove is
trivial. Fig. 19 shows the groove counterpart of the envi-
ronment graph of Fig. 18. Nodes are identified by a proper
unique label that represent the entity, e.g., MKey. In addi-
tion, each node has a proper type label, shown in bold in
Fig. 19, that encode the meaning of the geometric shapes
used in Portunes environment graphs.

In Portunes, edges have different meanings depending on
the nodes they connect, but this meaning is implicit in the
framework. In groove all edges require a label. Instead
of using different labels to represent neighbourhood and
containment, all Portunes edges are encoded in groove as
edges labelled contains. This uniform representation does
not invalidate the modelling and simplifies the design of
transformation rules.

Containment relation in groove

The relation �ln is encoded in groove by edges labelled
canContain. For every two nodes for which �ln holds, an
edge is added to the groove state graph. Figure 20 shows
the encoding of line 7 of Table 2 in groove.

Access control policies in groove

The security policies of each entity are encoded in groove

with additional policy nodes and edges. Each spatial, phys-
ical or digital node has one or more outgoing policy edges
that define its policies. A policy edge goes to a policy node
that lists the actions allowed by the policy (login – ln, logout
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Fig. 21 Secretary room security policies represented in groove
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Fig. 22 Secretary security policies represented in groove

– lt, or eval – e) and specifies the security requisites of these
actions.

Figures 21 and 22 depict the security policies for the sec-
retary room (node SRoom) and the secretary (node Sec),
presented as text in the previous section. The room has three
access polices, two for login and one for logout, and the sec-
retary has a single policy for all actions. The requisites for
identity, location and credential based access are identified
by edges labelled iPolicy, lPolicy, and cPolicy, respectively.

Actions in groove

Describing the behaviour of active nodes using only the basic
actions defined in Portunes is cumbersome. However, more
elaborate actions can be constructed from the basic ones.
In our solution, we use the following high level actions:

– Move: a node can move either up or down in the contain-
ment hierarchy of the environment graph;

– Pick: an active node can pick an inactive one that is in the
same location;

– Request: an active node can ask another node in the same
location to give up one of its possessions;

– Spawn: an active node can temporarily activate one of its
possessions and place it under an inactive node;

– Merge: an active node can deactivate and reacquire its
temporarily active nodes.

A node can perform a move action when the containment
relation is satisfied and the security policies allow the node
to logout from its source and login in its destination. In all
other actions, the same conditions for move also apply. Addi-
tionally, in the request action, the security policies must also
allow a node to perform eval at its target.

Each of the high level actions just described is imple-
mented in groove by a sequence of rules. To simplify the
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source canContain
contains

contains

credentials
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Fig. 23 Rule that describes the intention of an active node to move up
in the environment

design, we divided the rules into two groups: the ones who
describe behaviour and the ones who enforce security. The
behavioural rules describe the intention of an active node to
perform a certain action. Such behavioural rules are always
followed by one or more security rules that check the secu-
rity requisites of the acting node and perform the action when
allowed.

Figure 23 shows a behavioural rule where an active node
wants to move up in the environment. This is indicated by
the new move edge, along with the edges that mark source
and destination of the node and its security credentials. The
security polices are checked by the rule depicted in Fig. 24,
which also performs the move, when the policies allow. The
central node is the one moving, as pointed by the move edge.
In order to change its location, the moving node must satisfy
the logout policy of its source node and the login policy of
its destination node. These policies are identified in Fig. 24
by the nodes labelled lt and ln, respectively. We focus on
the lt policy at the left; the ln policy is very similar. In order
to capture the fact that a policy may require several creden-
tials, we use nested quantifiers, where the existential level is
named, to allow proper identification of required edges. For
example, the leftmost part of the rule in Fig. 24 states that all
credentials specified in the logout policy of the source node
should be contained in the credentials of the moving node.
In this case, the existential level is named c1 and correspond-
ing containment edge is pre-fixed with this name. Identity

and location policies are handled in the same way, with their
existential levels named i1 and l1, respectively.

To ensure that a behavioural rule is always followed by
a security rule, we use the control functionality of groove.
A high level action (e.g., move) is defined by a function in the
control program, and this function is composed by a sequence
of rule applications. A more detailed example of the use of
a control program in groove is given in Sect. 5.

Attack scenarios in groove

The generation of an attack scenario is done in groove by
means of a state space exploration. In order to guide the
exploration, we define an additional rule that describes a spe-
cific security breach that should not occur. Figure 25 presents
this rule for our running example. We have a security breach
when the employee manages to reach the hall in possession
of the memory stick with the sensitive data.

groove has an exploration option which performs a
breadth-first search until an application of a certain rule is
found. Using this option with the breach rule we instruct
groove to search for the shortest attack scenario, i.e., a trace
from the breach rule application to the start state. This trace
can be highlighted in the LTS and each of its steps inspected in
groove. If the exploration terminates without a trace being
found, we can assert that the security policies prevent the
given breach. For our running example, the shortest attack
trace found by groove is formed by 22 rule applications.

4.4 Evaluation

The functionality of the Portunes framework were properly
implemented using groove. In the following, we give a more
specific evaluation of each of the case features.

Using groove to automatically generate scenarios

The ability to perform state space exploration of graph pro-
duction systems is one of groove’s strongest points and it

Fig. 24 Rule that checks
security credentials and perform
a move action
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Fig. 25 Rule that defines a security breach

makes the tool very suitable for this case. The possibility to
guide the exploration to search for a specific security breach
is of particular interest.

Scalability of groove solution

The implementation of Portunes that we present in this
section is a proof-of-concept, designed to be simple and
easy to understand. In particular, a point that was not prop-
erly addressed is scalability. Tests show that performance
degrades fast when start graphs grow to more than hun-
dreds of nodes. To tackle this problem, Dimkov et al. [11]
developed a more elaborated groove solution, with a similar
modelling of environment graphs but a different set of trans-
formation rules. To further improve the performance they are
now developing exploration algorithms tuned to this particu-
lar case and will extend groove to their own needs. This
is possible because groove is open source software and
provides an externalisation API that allows the tool to be
extended in a simple way.

Generality of groove solution

All rules defined in our solution are general, in the sense that
they are not tuned to a certain environment graph. This means
that the same set of rules can be used in every analysis, and
the user only needs to provide the start graph that describes
the initial configuration of the environment and the rule that
constitutes a security breach.

A feature of groove that permits such a general solution
is the use of nested rules. A nested rule allows changes to be
made to sets of sub-graphs at the same time, rather than just
to the image of an existentially matched LHS. An example
of a nested rule is shown in Fig. 24.

The use of nested rules allows complex actions to be
expressed neatly within small rules. Without quantifiers,
the rule would have to be split in a constant part and a
to-be-repeated part. Also, it may be necessary to explicitly
add control to the part that must be repeated, to ensure that
its beginning and its end can be detected statically. Since all
transformations specified in nested rules are performed in
one transition, this type of rule also reduces the state space
of the graph transition system. Having nested rules is a clear
strong point of groove.

Diverse audience of groove solution

Tools based on graph transformation usually have a strong
visual appeal. The graphical interface of groove offers a
large set of visual capabilities that are both powerful to use
and easy to master. In this case, we believe that the graphi-
cal visualisation of rules is an improvement over the origi-
nal inference rules of Portunes. Furthermore, the tool keeps
all the theoretical aspects of graph transformation under the
hood, and presents a simple “push-button” interface. This
helps to capture the interest of a larger group of users, as
witnessed in a masters’ course on security, where Portunes
and groove were used in teaching.

To summarise…

The dynamic behaviour of entities can be easily modelled
in terms of graph transformations, making groove an ade-
quate tool for this case study. The groove functionality high-
lighted in this case are: guided state space exploration, nested
transformation rules, and graphical user interface. The issue
with scalability of the solution is being tackled by the creators
of Portunes.

A detailed description of the framework can be found
in [12], and the implementation is available from the Por-
tunes project in SourceForge [11].

5 The AntWorld case study

This case exemplifies the use of groove as a tool for proto-
typing the behaviour of a given system. The system itself is
a synthetic benchmark, used in the GraBaTs 2008 transfor-
mation tool contest (see [34]).

5.1 Case description

The AntWorld simulation consists of an ant hill sitting in the
middle of a large area. The ants are moving around search-
ing for food. If an ant finds food, it brings the food home
to its ant hill to grow new ants. On its way home, the ant
drops pheromones marking the path to the food reservoir. If
an ant without food leaves the hill or if a searching ant hits
a pheromone mark, the ant follows the pheromone path to
the food. This behaviour should result in the well-known ant
trails.

The area grid

The area in which the ants move consists of a grid of nodes. In
order to enable the ants to go home on a straight path if they
have found some food, the area grid shall look like a spider’s
web, cf. Fig. 26. (In this figure, the ants have not yet found
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Fig. 26 Example layout for the ant hill’s area grid

any food; consequently none of the fields have associated
pheromones.)

The AntWorld simulation works in rounds. Within each
round, each ant makes one move. Afterwards, the area may
expand, pheromones may evaporate, and new ants may be
born.

– Initially, the area grid consists only of the hill and the first
two circles.

– Whenever an ant enters the currently outermost circle (i.e.
the border of the yet known area), a new circle of nodes
is “discovered” and should be created. Every 10th node
of this new circle carries 100 parts of food.

– After each round, 5% of the pheromones on each field
evaporate; moreover, the hill creates one new ant per
delivered food part.

Ant moves

The ant behaviour depends on the following modes:

– An ant without food is in search mode. It either takes one
piece of food (if it finds one) and enters the food carrying
mode, or it goes to a randomly chosen neighbour field,
favouring those with enough pheromones;

– An ant in food-carrying mode follows the links towards
the inner circle, dropping pheromones as it goes along
(which guides other ants to the food place), or drops the
food on the ant hill and enters search mode again.

Goals

The goals of the case study were as follows:

– Tools shall model and run the AntWorld according to the
above rules.

– For performance measurement, tools shall report, for rea-
sonable numbers of rounds, the number of circles of the
grid, the number of ants created, and the total execution
time.

– If possible, tools shall provide animations showing the
ants and how they search for food and form ant trails.
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5.2 Case features

The following features of this case study are of particular
interest.

Prototyping

The central problem of this case study is to encode the behav-
iour of a particular system—in this case, the system of an
anthill, as formulated in a number of rules. Thus, the case
study tests the ability of a modelling environment to provide
a model that faithfully encodes the given rules.

Control flow

Part of the problem of prototyping is that the rules of ant
movement and the extension of the area grid are complex; in
fact, they are composed of multiple steps, or phases. The eas-
iest way to model them faithfully is to make this composition
explicit, using some form of control flow.

Simulation

The purpose of the prototype is to study the emerging behav-
iour of the ant colony. For instance, the model should show
the formation of ant trails seen in nature. For this purpose,
the most important feature required of the modelling envi-
ronment is the ability to actually simulate the rules, either
in a single-step mode or in an automatic multi-step mode,
and observe their effect. Moreover, the behaviour of the ants
is highly non-deterministic; the simulation should be able to
reflect this, in the sense that different runs should result in
different outcomes.

Animation

The simulation goal clearly states the desirability of provid-
ing animated behaviour of the system.

Performance

For the (multi-step) simulation to give rise to interesting
results, the more steps it consists of the better; also, for a
reasonable coverage of possible behaviours it is important
to rerun the simulation. Both factors require a high perfor-
mance of the simulation environment. Note that the case has
the interesting characteristic that the system (the ant hill)
never stops growing; this will have a negative impact on per-
formance.

5.3 Aspects of solution

Since the case description is already in a rule-based format,
modelling is relatively easy: essentially, we need to develop
a graph representation on which all rules should be made to
work. However, some aspects require a bit of care.

The process that we have followed in arriving at the solu-
tion consists of several steps. In the first step, we prototype
the desired behaviour as directly as possible, without con-
sidering the performance of the resulting rules and without
using type checking. This is refined in further steps: large
performance gains can be obtained by reducing non-deter-
minism where possible, by avoiding regular expressions, and
by guiding the search plan. Typing is useful for documenta-
tion and maintenance, but (in the current implementation)
does not speed up the simulation.

Rounds and phases

To ensure that the system displays the required behaviour in
rounds, and within each round goes through the prescribed
steps, we need to restrict the applicability of rules: at any
given stage of the simulation, only a limited number of
rules (viz., only those to do with the active phase) should
be enabled. In order to achieve this, we use the following
control program:

This will execute the function main until stop matches.
main directly reflects the phases in the case description: ants
reproduce, ants move (in the function turn), pheromones
evaporate, the area grid may grow (in the function grow),
and finally the turn counter is increased.

The function turn specifies that, as long as a new ant
can be selected (as determined by the turn-edge, which is
updated to the next round as soon as an ant is selected), this
ant can attempt to drop or pick up food, after which it makes
a move through the grid. In fact the rule select_ant attempts
to find an ant that has not yet moved in this turn, and marks
it as selected; the other rules in turn match the selected
ant, and the move_*-rules deselect it. Some of the rules are
shown in Fig. 27.

Note that move_random uses a regular expression to
specify that movement may occur backwards or forwards
along out- or next-edges.

For another rule, evaporate, the control program does not
show a loop, even though the rule should be applied to all
fields with a positive number of pheromones. This is because
this behaviour lends itself to be specified using a quantified
rule, shown in Fig. 28.

Typing

Figure 29 shows the type graph for the groove AntWorld
solution. Without going into all the details, we mention one
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interesting aspect, namely that groove supports multiple
inheritance: Hill is a subtype both of Field and of Slot. The
latter is used to control the ordering of the ants, which we
use to select them deterministically; see below.

Non-determinism

Matching and applying transformation rules are inherently
non-deterministic. Non-determinism in principle affects the
performance adversely, because the search for rule matches
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takes more time. In this case, the non-determinism partly
reflects the problem that is modelled, but other parts of the
system behaviour are completely deterministic. For instance,
the function grow in the control program, which has the
effect of extending the grid with an additional ring, is trig-
gered non-deterministically (by the movement of an ant) but,
once triggered, can proceed completely deterministically.
In fact, the corresponding rules (not shown here) have been
constructed in such a way that their effect is deterministic.

The ant movement, on the other hand, is supposed to be
non-deterministic, and in fact should vary across simula-
tion runs. This is achieved by the so-called random linear
evaluation strategy of groove: at every state, a single ran-
dom choice is made between enabled rule applications, after
which simulation proceeds at the new target state. This is,
therefore, quite different from the full state space explora-
tion in the leader election case (Sect. 3).

However, let us also consider the order in which ants are
selected for movement within a turn. Rule select_ant, shown
in Fig. 27 above, selects an ant randomly among the ones that
have not yet moved this turn. The random linear exploration
strategy requires that all matches be found, after which one is
chosen randomly. This means that, in a single turn, the num-
ber of matches calculated for select_ant is quadratic in the
number of ants (for instance, for 1,000 ants we have to cal-
culate

∑1,000
i=1 i = 500, 500 matches). Given that, in fact, the
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Table 3 Performance improvement due to rule system optimisation

Version Time (s) Reduction (%)

Start 510.7

Determinised 245.8 50

Guided 124.0 51

Split 54.5 56

order in which ants move is hardly relevant to the behaviour
of the system, we can improve the ant selection. A simple
idea is to impose a linear order over the ants, reflecting their
age (i.e., the order in which they are born), and letting ants
move in this order. This means that (among other things) the
rule in Fig. 27 changes to Fig. 30.

Simulation

We have simulated our rule system using the 64-bit Sun JVM
1.6 (build 16) with 1G (startup) to 4G (maximum) of mem-
ory, under Windows XP Pro x64, on a machine with 2 Intel
Core CPUs at 3.00 GHz. The results are collected in Tables 3
and 4. All figures reported are averages over 5 runs. It should
be noted, however, that (due to the random nature of the ant
moves) the number of fields and ants, and hence the running
time, show a large variance. This implies that not too much
weight should be put on the exact figures. However, by look-
ing at their relative values, we can see clearly the performance
improvement.

Table 3 shows the running times for 100 turns using a
succession of refined models:

Start This is the initial prototype, in which no performance
tuning was done.

Determinised This is a version where the ant selection pro-
cess was determinised using a fixed order of ants, as
described above (see Fig. 30).

Guided This is a version in which the pattern matching
strategy was aided manually with hints about the opti-

mal search plan. The idea is to match “rare” edges
first (see also [21]); this can be set through a groove

option.
Split This is a version where the move_random rule of

Fig. 27 was replaced by a choice between four rules,
each of which implements one of the choices in the reg-
ular expression.

It can be observed that especially the removal of non-
determinism in the ant selection had an enormous benefit
on the performance. Although the table does not show this,
we can also report that (as should be expected) the speedup
factors grow for longer runs.

Table 4 shows the performance of groove for simulation
runs of increasing length. It is clear that the running times
increase more than linearly with the size of the grid and the
number of ants; moreover, the number of ants stays comfort-
ably above the number of grid nodes. Given that the ratio of
parts of food to grid nodes is 10:1; however, the number of
ants is actually lower than might be expected.

In [25] and especially [20], an extensive complexity anal-
ysis of the AntWorld case can be found. An evaluation of
the groove performance with respect to that of other tools
follows below.

5.4 Evaluation

Using groove for prototyping

The example brings out the prototyping advantages of
groove very well. It is possible to encode the prob-
lem at hand directly, without having to think about or
resort to special data structures. Graphs, rules and their
effects can be inspected visually. Since groove by default
remembers entire transformation sequences, the debug-
ging possibilities are good. The recent extension to type
graphs also helps in maintaining consistency of the rule
set.

Using control flow in groove

groove’s control language does quite well in capturing the
intended system behaviour on a high level. Without the con-
trol language, it would have been necessary to include more
auxiliary structures into the graphs themselves, in order to
make sure that the phases as required in the problem descrip-
tion are indeed followed.

There is a possible extension to the control language that
is quite interesting in the light of this case. The idea is to
extend rule invocations with parameters. For instance, instead
of using a selected-edge in the graph to distinguish an ant
selected by select_ant, one could also use a variable in
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Table 4 Results for increasing
total turn counts Turns Time (s) Rings Fields Ants

25 0.7 7 222 20

50 2.9 8 279 204

75 9.9 13 678 581

100 54.5 16 1,001 1,344

150 675.0 27 2,833 3,993

the control language to store the node identity. The function
move would then become

This both improves the understandability of the rule sys-
tem and offers possibilities to improve the matching of the
rules (see the performance section below).

Using groove for simulation

This case does not involve full state space exploration (since
there is a large amount of non-determinism in the ant moves,
the state space size is truly enormous). Random linear explo-
ration is used for simulation. This works well; the fact that (in
GUI mode) groove stores all intermediate steps and can dis-
play them, as well as the non-deterministic branches that were
not taken, is a great help in constructing a correct solution.

Using groove for animation

groove essentially offers no facilities for animation. Simu-
lation can be performed in automatic mode, but in that case
the host graph is not animated.

The performance of groove

One way to judge the performance is to compare our solution
with other tools. In [15,20,25], we can find three other graph
transformation-based solutions to this case, constructed in
fujaba, vmts and viatra2, respectively. From the figures
presented there, it is clear that those tools perform orders
of magnitude faster than groove; for instance fujaba can
simulate 1000 rounds in 17 seconds and vmts does the same

in 32 seconds. The only comparable solution is given by
viatra2 with local matching only, which takes 800 seconds
to simulate 150 rounds, compared to our average of 675 sec-
onds. However, viatra2’s incremental and hybrid matching
algorithms improve upon this by orders of magnitude.

For this difference in performance, we offer the following
explanations:

– The core functionality of groove is to construct the state
space, and this is what the performance is geared towards.
In the AntWorld case, the only benefit we can draw from
this is the ability to inspect traces that lead up to a certain
result.

– groove interprets all transformation rules, in contrast
to fujaba and vmts which (partially) compile the rules
to native code. In fact for fujaba this is the core func-
tionality: it is meant as a high-level modelling tool that
produces Java code.

– Measurements have shown that around 90% of the
groove execution time is spent in matching. In contrast
to viatra2 and vmts, we have not yet invested much
effort in optimising the search plans or implementing
incremental algorithms (however, this is currently under-
way). A telling point is that, without these optimisations,
indeed the performance of viatra2 is in the same order
of magnitude as that of groove— even though the rea-
sons for the relatively poor performance, as analysed in
[20], may not be the same.
In fujaba, the rules are in fact formulated in such a way
that matching is trivial — which essentially means that
writing “good” (fast) rules encompasses the manual cre-
ation of a good search plan.

To summarise…

The AntWorld simulation can be properly expressed in
groove. Key features of the tool relevant for the solution
are: the random linear exploration strategy, attributed rules,
and the control language. The performance of the tool and its
lack of animation are an issue for this case study; however,
the study also gives some hints on how to fine tune the per-
formance of groove after an initial solution for a problem
is constructed.
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6 Additional work

In this section, we present additional research that uses the
groove tool as part of the proposed solution for various prob-
lems. We only give a brief description of each work since they
all utilise a subset of the groove features that were presented
in previous sections. The purpose here is to provide further
examples that illustrate the usability of the tool in several
different domains.

Control flow semantics of programming languages

The standard way to present the syntax of a programming
language is by giving the syntax definition in (some variant
of) Backus–Naur Form (BNF). On the other hand, there is
no commonly accepted representation to describe a program-
ming language semantics, which is usually only described in
natural language. Any attempt at software verification suffers
greatly from this, since natural language is inherently ambig-
uous and the semantics of common programming languages
is usually fairly complex. In an attempt to solve this prob-
lem, Smelik, Rensink, and Kastenberg [36] propose to spec-
ify the control flow semantics of an imperative programming
languages using groove. In their work, they produce one or
more graph transformation rules for each syntactic element of
the language (expressions, conditionals, etc). Together, these
rules not only formally describe the control flow semantics
of the language but also can be used to construct the control
flow graph (CFG) of programs. The input of this method is
the Abstract Syntax Tree (AST) obtained from source code.
In groove, the AST is used as a start graph and its corre-
sponding CFG is obtained by performing a linear exploration
of the rules. The structure formed by AST+CFG (called a
program graph) provides a complete static representation of
the program, which can be used in program simulation or
verification, for example. In order to show the feasibility of
the proposed approach, the authors chose Java as their work-
ing language and developed rules in groove to capture the
control flow semantics of all language constructs, including
exception handling.

Execution semantics of programming languages

In [22], Kastenberg, Kleppe, and Rensink describe the exe-
cution semantics of a simple object-oriented programming
language in terms of graph transformation rules. A program
graph (such as the one described in the previous item) is used
as input and each rule application simulates the execution of
a program instruction. By means of groove’s state space
exploration capabilities, it is possible to generate finite exe-
cution traces of a program and model check for errors. In this
setting, groove can be seen as a non-deterministic execution
engine for the language defined by the transformation rules.

This correlates to other software model checking approaches
such as the Java PathFinder project [40], on which the execu-
tion language is Java byte-code and the standard Java Virtual
Machine is replaced by a non-deterministic one.

Computer-aided evolution of object-oriented designs

Evolution mechanisms are structures that prepare soft-
ware for future changes. These mechanisms have to be
implemented in the software from the get-go, which takes
additional effort, but allows expected changes to be applied
afterwards with minimum effort. In [6], Ciraci, van den
Broek and Aksit introduce cde, a tool that aids the appli-
cation of evolution mechanisms using graph transformations
expressed in groove. The supported evolution mechanisms
are expressed as (sequences of) fixed generic graph rules,
which are instantiated by cde with the relevant identifi-
ers from the software to be changed. The software itself is
expressed in argoUml

4 and is exported to a graph format
using xmi. Then, the transformation is applied in groove,
and the output is imported again in argoUml. This entire
process is carried out by cde.

Aspect interference detection

Aspect Oriented Programming (AOP) is a paradigm of pro-
gramming in which supporting functions are isolated from
the main program’s business logic. It aims to increase the
modularity by allowing the separation of the cross-cutting
concerns. An aspect can alter the behaviour of the base
code by applying advice (additional behaviour) at various
join points (points in the program). Aspects that in isola-
tion behave correctly may interact when combined. A change
made by interactions of aspects to each other’s behaviour is
called aspect interference. In [1], Aksit, Rensink and Staijen
show an approach to detecting aspect interference. Aspect
compositions are modelled in groove as a graph produc-
tion system. A graph-based model of a join point is gen-
erated from the source-code of the system. The run-time
semantics of the AOP language is also specified as a graph
transformation rule system. The graph-based model of the
join point is transformed to a runtime-state representation.
Combined with the production system, the execution of the
aspects is simulated. The simulation results in an LTS, which
is used for analysis and verification of the system at its join
points.

Semantics of activity diagrams

There is much research done about formal modelling and
verification of workflows using different formal languages.

4 http://argouml.tigris.org.
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In [13] and [18], Engels and Hausmann have introduced
the notion of dynamic metamodelling (dmm) as a seman-
tics description technique for Visual Modelling Languages.
Graph transformation is used to define the behaviour as a sys-
tem of transitions. The traditional graph rules were extended
in their work by defining a new concept of rule invocation.
There are two kinds of rules in dmm: big-step and small-step
rules. Big-step rules act as traditional rules and small-step
rules should be invoked by big-step rules. Using these kinds
of rules, modelling of complex systems can be simplified.
Hausmann then defines semantics for uml activity diagrams
using the concept of dmm. Subsequently, Soltenborn [37]
uses dmm and defines semantics for uml activity diagrams
for modelling and verification of workflows. He uses groove

to perform such verification.

Modelling Dynamic Reconfigurations

In [24], Krause et al. propose an approach for defining recon-
figurations for the coordination language Reo [2] using
graph-rewriting techniques. In their work, they apply the
ideas of high-level-replacement (HLR) systems to the coordi-
nation language Reo and show how they can be used to model
dynamic reconfigurations of Reo connectors. They also pro-
vide a full implementation of this reconfiguration approach
for Reo, including tools for defining, verifying and executing
dynamic reconfigurations. For verification, they have imple-
mented conversion tools that produce output for the Attrib-
uted Graph Grammar (agg) system [38] and groove. Using
these two tools, Krause et al. perform confluence and ter-
mination checks for reconfiguration rules as well as state
space exploration and model checking of dynamic reconfig-
urations.

Applying formal methods to gossipping networks

A gossipping network consists of a large number of nodes
that communicate with adjacent nodes only, spreading infor-
mation in the same way people spread gossip through a com-
munity. In [7], Crouzen, van de Pol and Rensink apply formal
methods to analyse properties of gossipping networks. The
applied methods and tools include µCRL2, groove, Con-
tinuous Time Markov Chains, Markov Reward Models and
model checking. In this whole, groove is used for describ-
ing the behaviour of the gossipping network, and for applying
symmetry reduction to detect and remove equivalent states.
This allows bigger networks to be handled by the formal
methods. The symmetry reduction is realised in groove by
the isomorphism check that is applied automatically when
exploring a state space.

7 Conclusion

To conclude, we first give an overview of the case studies
presented in this paper. Following the overview, we discuss
future extensions and features planned for groove. Last, we
give a short comparison between groove and other graph
transformation tools and make some final remarks.

7.1 Overview of case studies

The case studies discussed in Sects. 2–5 have quite differ-
ent characteristics and the groove solutions presented stress
different features of the tool. Table 5 shows an overview of
the main points discussed in each section.

The first line of the table shows the general area of each
case. It is reasonable to assume that problems from similar
areas may have a similar solution in groove. The following
three lines present design choices that the user must make
when modelling a problem in groove:

Typing The use of type graphs considerably changes the
degree of freedom in modelling. Untyped graphs do not
impose any restrictions and allow the fast conception
of an initial solution. Typed models may take longer to
develop, but ensure a certain consistency in the solution
and ease the presentation. It is evident that certain kind
of problems may benefit from typing, e.g., the bpmn to
bpel case, whereas problems with few typing structure,
such as in the leader election case, have little to gain in
a typed setting. As a rule of thumb, at least node types
should be used. They impose virtually no modelling
overhead and improve readability of the solution.

Control All cases presented use a method to control rule
application. The control method may change during the
modelling process. An initial design usually starts with
no control and then moves to rule priorities when neces-
sary. If the interaction between rules becomes complex,
for example when a set of rules may disable/enable sev-
eral other rules at different priority levels, then control
programs are normally used.

Strategy The strategy used for state space exploration has a
large impact on the performance of the tool. The strategy
choice depends on the characteristics of the problem.
Cases where the order of rule application is irrelevant
and rule application always leads to a single final state
(confluent grammar) usually employ a linear explora-
tion strategy, e.g., the bpmn to bpel case. It is the oppo-
site for cases, where the interleaving of rule applications
is crucial. Full state space exploration is usually neces-
sary for the verification of dynamic behaviour (leader
election case). Finally, when the state space is too large,
partial exploration may be used for bug hunting (secu-
rity analysis case).
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Table 5 Overview of the case studies presented

Case BPMN to BPEL Leader election Organisational security AntWorld

Area Model transformation Verification Analysis Simulation

Typing No, but would be useful No, and would not be useful Node types Full types

Control Rule priorities Rule priorities Control program Control program

Strategy Linear exploration Full state space exploration Find rule application Random linear exploration

Relevant features Quantified rules
Wildcards and regular
expressions

Model checking
Symmetry reduction by
isomorphism checking

Quantified rules Attributes

Interface GUI helps debugging GUI helps prototyping GUI helps analysis of results GUI helps prototyping

Strong points Rapid prototyping Analysis capabilities Rule expressiveness Rapid prototyping

Local confluence check Analysis capabilities

Weak points Model trafo support Scalability Scalability Performance

Interoperability Animation

The fifth line of Table 5 summarises which features of
groove were particularly relevant for the solution of the
case study. These features have been discussed in depth in
the corresponding sections.

A final solution is often reached after some refinement
iterations (as illustrated in the AntWorld case), and each iter-
ation gives new insights on the problem being handled and
provides an idea on where to improve next. In all cases the
interactivity of groove’s graphical interface was very useful
and helped in the solution development cycle.

7.2 Future extensions

Based on the case studies carried out, we are working on and
planning some tool extensions that will further enhance the
usability and power of groove.
Performance improvements. A key factor in most case stud-

ies is the performance of groove. We are investigating
two ways to improve performance. First, using incre-
mental pattern matching, as studied in [4], we expect
a big performance increase over the current matching
algorithm. Second, abstraction, as studied in [32], is
expected to result in smaller overall state spaces, which
will be particularly advantageous for the verification-
type case studies, such as the leader election and secu-
rity cases.

Control parameters. We are working on an extension to the
control language with rule parameters. These parame-
ters will allow a more fine-grained control over the place
in a graph where a rule should be applied. For instance,
if a sequence of rules should all be applied to the same
node, currently the first rule has to mark that node with
a special edge and the subsequent rules have to test for
that edge. Using parameters, the control program would
specify directly that the subsequent rules have to match
at the node “found” by the first rule. (Note that the con-

trol languages of several of the tools discussed below,
including at leastGrGen, vmts and viatra2, already
support parameter passing.)

Transactions. A single rule expresses an atomic change
to a graph, but not all atomic changes can be cap-
tured by single rules. Quantification extends the expres-
siveness of rules enormously, but there are still many
cases in which one would like to specify an atomic
change that is too complex to be expressed by a sin-
gle rule. We therefore intend to implement a notion
of graph transaction, which atomically combines a
(controlled) set or sequence of rule applications. This
will also help in state space reduction, since such
transactions cannot be “interrupted” by other rule
applications.

7.3 Comparison with other tools

In this section, we compare groove with other general graph
transformation tools and tools which use graph transforma-
tion as an engine to achieve some other goal, like model
transformation.

The comparison is summarised in Table 6 and covers seven
different criteria. These criteria have been chosen based on
the key features used in solving the cases presented in this
article (see Table 5).

The first criterion is the focus of the tools, i.e., the main
goal for which these tools are designed and optimised. We
have four different categories: general purpose, model trans-
formation, high performance, and verification. We call a tool
a high performance tool if it incorporates design decisions
that increase performance, possibly at the cost of gener-
ality; for instance by restricting the allowed graph struc-
tures to reflect programmable data structures. It should be
noted that the focus criterion only shows the emphasis of
the tools and does not imply restrictions on usage. For
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instance, groove is categorised as a general purpose tool,
however, in Sect. 2 we saw that groove can be used for
model transformation as well. Similar remarks hold for other
tools.

The second criterion is typing. All tools except augur

support type graphs or meta models and in all tools except
groove, type graphs are mandatory, i.e., models must have
a type graph. groove is the only tool in which the use of
typing is optional.

The third criterion is the control functionality of the tools.
In most tools the order of rule applications can be controlled
using an imperative language. In viatra2, fujaba, vmts,
and progres, this language has advanced features like recur-
sion. agg and atom3 only support priorities. The control
language of groove is not as advanced as some of the other
tools, but groove supports priorities for rules, as well. Addi-
tionally, groove has advanced quantification features which
are compared separately in another criterion.

The fourth criterion is the ability of the tools with respect
to rule application (state space exploration) strategies. Most
of the tools support more than one strategy, such as random,
manual, rule priority-based, or customised through the use
of the control language. However, all these variant strategies
only explore one linear trace of rule applications. groove,
however, can explore the entire state space generated from
different rule application sequences. In fact, it supports mul-

tiple full state space exploration strategies. augur also pro-
vides full state space exploration.

The fifth criterion concerns advanced rule features, that
increase the expressiveness of individual rules. As seen
throughout this paper, groove supports nested quantifica-
tion. In this respect, no other tool is capable of specify-
ing graph conditions as concise as groove [33]. GrGen,
progres, viatra2, and vmts support one level of univer-
sal quantifier, which are rules that are entirely universally
quantified. It means that first all the matches of one rule are
found then the rule is applied on all the matches concur-
rently. progres and fujaba have set nodes which are in fact
single universal quantified nodes. GReAT provides match
conditions which is a limited version of universally quan-
tified rules. viatra2 supports recursive rules in the pattern
definition, besides patterns can be defined independent of
rules and consequently, can be reused in the definitions of
other patterns or rules. groove supports wildcards on edge
labels, allowing paths in graphs to be specified using regular
expressions. progres, fujaba and GrGen also support reg-
ular expressions. The graph grammars supported by augur

are a bit restricted as it for example does not support node
deletions and node merging.

The sixth criterion is about analysis facilities that are
provided by different tools. agg has one particular feature,
namely, critical pair analysis of rules, which checks whether

Table 6 Comparison between groove and other tools

Tool Focus Typing Control Exploration Advanced rule features Analysis Editing

agg [38] General purpose Required Priority Linear Critical pairs Graphical

atom3 [8] Model transformation Required Priority Linear Triple Graph Graphical

Grammar rules

augur [23] Verification Untyped Exhaustive Abstraction Textual

fujaba [14] High performance Required Imperative (advanced) Linear Set nodes Graphical

Regular expressions

GReAT [3] Model transformation Required Imperative Linear Match condition Graphical

Recursive patterns

GrGen [16] High performance Required Imperative Linear Regular expressions Textual

Universal quantification

progres [35] General purpose Required Imperative (advanced) Linear Set nodes Graphical

Star rules

Regular expressions

viatra2 [39] Model transformation Required Imperative (advanced) Linear Recursive patterns Constraint Textual
Universal quantification satisfaction

problems

vmts [41] Model transformation Required Imperative (advanced) Linear Universal quantification Textual

groove General purpose Optional Imperative Priority Multiple Quantification Model checking Graphical

Wildcards

Regular expressions
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two rules interfere with each other. This feature is used to
determine statically if a graph grammar is confluent. augur

generates a Petri net based on the graph grammar whose
state space is an over approximation of the graph grammar.
Using this abstraction technique it can analyse graph gram-
mars with infinite state spaces. viatra2 provides some lim-
ited support for solving constraint satisfaction problem on
graph models and finally, groove can verify CTL and LTL
specified properties on the state spaces generated by a graph
grammar.

The final criterion is whether a tool provides a graphical
user interface for editing graphs and rules, or is text-based
only.

7.4 Final remarks

In this paper we give a flavour of how systems can be
modelled and analysed with our graph transformation tool,
groove. The case studies presented cover quite different
domains, which, together with the additional work given in
Sect. 6, demonstrates that groove is a flexible tool that can
be used to solve problems from several different areas.

Another important point is that groove is very easy to
install and use. The interactive GUI helps the user to exper-
iment with, analyse, and improve the grammar constructed.
This implies that groove is eminently suited for fast proto-
typing.

The grammars for the case studies discussed in this paper
are available at the groove project website (http://groove.
cs.utwente.nl/downloads/). The binaries and source code of
the tool can also be downloaded from the same address,
as well as some documentation, such as a user manual and
tutorials.
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